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Abstract—Mixed-precision is a paradigm that tries to combine
computations with different levels of precision to compose results.
This approach has been used extensively to optimize scientific ap-
plications and has shown speed and energy gains, without causing
any relevant precision loss. However, to exploit mixed precision
opportunities most applications need to be recompiled to use
different instructions and types. Thus, in this work, we present a
new floating-point unit design, able to automatically decide when
an instruction should be executed using less precision, without
recompilation or user direct intervention. Our proposal takes
advantage of ad-hoc polymorphism to perform computations with
different data types, dynamically selecting a proper instruction on
demand, and can also be configured according to overall precision
requirements. Our simulated results show that, for some double-
precision benchmarks, we are able to execute more than 90% of
all floating-point operations in half-precision, without affecting its
accuracy and resulting in a precision error below 1%. In addition,
this new technology may increase instruction level parallelism
and cut down the necessity for type casting operations.

Index Terms—Transprecision, Mixed-Precision, Floating-Point
Unit, RISC-V

I. INTRODUCTION

In traditional computing systems, most operations are car-

ried out in a conservative way - providing the largest available

precision and accuracy whenever possible. Hence, from the

hardware perspective, it does not matter whether one or sixty-

four bits are enough to offer a valid result. If an instruction

was designed to use 64-bit precision, it will be executed as if

64-bit precision was strictly required, without worrying about

data distribution nor the application minimal requirements.

Contradicting this traditional paradigm, several studies have

shown that modern hardware is underutilized. Integer opera-

tions, for example, rarely use their full dynamic range, requir-

ing, most of the time, only a small fraction of all allocated

resources to generate same results [1]–[3]. Moreover, skipping

computations or performing inexact calculations can result in
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considerable speed and energy efficiency gains, justifying a

little accuracy loss [4].

In an attempt to improve floating-point hardware utilization,

researchers have combined different levels of precision in

order to produce accurate results. This paradigm, also known

as mixed-precision computing, has shown speed and energy

gains without relevant precision loss [5]–[9]. However, detect-

ing which operation can be performed using less precision,

avoiding negative effects on the accuracy and performance is

not an easy task.

For most applications, the amount and complexity of

floating-point operations makes mixed-precision optimization

impractical. In addition, computations with different types

require casting instructions to convert values to a common

format. Thus, in some situations, even though most variables

can be represented using a less precise type, the increase in the

amount of type casts inside loops can result in a slowdown.

Different from other paradigms, the transprecision-

computing is an extension of approximated-computing and

a more general solution than mixed-precision. It attempts to

combine the advantages of approximated techniques with the

accuracy of traditional systems, providing ways to guarantee

that the minimal precision constraints on the final results are

always met [10].

Once intermediate computations can usually be performed

with less precision and without accuracy loss, a transpre-

cise hardware can be designed to use approximated circuits

whenever possible, alternating the computation to a more

precise implementation on demand. In addition, a transpre-

cision solution integrates hardware and software, offering

granular control of the approximated hardware and feedback

information to upper layers. This design allows better system

utilization, once application can keep track of the overall error

and dynamically decide if more precision is required.

In this work, we propose a transprecision design to im-

prove floating-point hardware utilization. Our proposal takes

advantage of hardware ad-hoc polymorphism to perform com-

putations with different data types, dynamically selecting an

appropriate precision on demand. Our hypothesis is that these

hardware changes will increase instruction level parallelism
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and cut down the necessity of type casting instructions for

floating-point operations.

This paper is organized as follows: in Section II, we present

a literature review; in Section III, we present the theoretical

design of our TFPU (Transprecision Floating-point Unit); in

Section IV we present our infrastructure for floating-point

hardware exploration; in Section V, we present our results,

including the potential speed-up of this new technology; in

Section VI we explain how this new technology can improve

floating-point hardware and what we can do in the future;

Lastly, in Section VII, we present our conclusions.

II. RELATED WORK

Researchers have demonstrated gains in speed and memory

efficiency by changing double-precision variables into less

precise types. In this section, we summarize the most relevant

contributions to the field [5].

A. Software-assisted mixed-precision tuning

The first attempt to automatically detect mixed-precision

opportunities in floating-point computations was proposed by

Michael O. Lam et al. (2013) [6], [11]. They designed a frame-

work, called CRAFT HPC, that uses binary instrumentation

and modification to build mixed-precision configurations of

binaries that were originally designed to use only double-

precision.

The CRAFT HPC uses an automatic breadth-first search al-

gorithm to find code regions that can successfully be replaced

with single-precision. Unfortunately, this technique requires an

analysis of 2n different configurations, where n is the number
of floating-point instructions. This worst-case scenario makes

a brute-force solution impractical for a large code base, since

an evaluation of a test configuration requires a full program

run.

In an effort to overcome the search space limitation and

improve floating-point mapping, different solutions were pro-

posed [8], [12]–[14]. However, the downside of most floating-

point mixed-precision tools is the fact they focus on improving

performance and energy efficiency for specific inputs using

static error control. Unfortunately, these approaches offer

no guarantee that error requirements will be met across all

program inputs. To overcome this limitation, different rigorous

alternatives have been explored [9], [15], [16], but the speed

up improvement are arguably small, when compared against

more advanced hardware solutions and previous publications.

B. Hardware-assisted mixed-precision tuning

Many experiments show potential on the usage of less accu-

rate floating-point types [17]. Following this trend, companies

have introduced half-precision floating-point support into their

hardware. Modern NVIDIA GPUs, for instance, can join half-

precision operations and execute them in parallel using single-

precision units. This action can also be specified manually,

using the new half2 vector data type.

According to recent publications, training deep neural

networks with NVIDIA’s half-precision support can offer

up to 8x more arithmetic throughput when compared to

single-precision [18]. However, properly conversion of single-

precision applications to half precision is a problematic task.

To simplify this process, Nhut-Minh Ho et al. (2017) [19] has

developed a tool built on LLVM Clangs LibTooling, called

cuda-half2.

Cuda-half2 is able to rewrite CUDA code and exploit the

native half-precision operations. However, by default, this tool

converts all floating-point variables to half and half2. This

straightforward conversion can lead to execution errors and

a drastic reduction in precision and accuracy - once half

precision has a dynamic range of 2−15 to 214 with 10-bit of
mantissa, while double has a range of 2−1024 to 21023 with
52-bit of mantissa. Thus, different from most mixed-precision

tuners, this solution works as a guide, letting the developer

decide which set of variables to optimize.

Similar to NVIDIA, Intel researchers have presented a

floating-point unit that performs FMA (Fused Multiply-Adds)

operations with automatic precision tracking [20], [21]. To

increase throughput and improve energy efficiency, the pro-

posed FMA exploits vectorization and can configure its single-

precision hardware to operate in three different modes: 1-way

(using 24 bit mantissa), 2-way (using 12 bit mantissa) or 4-way

(using 6 bit mantissa). A certainty tracking circuits operate

in parallel with exponent computation, calculating operand-

dependent accuracy bounds that indicate the need for increased

precision. However, there is no public information if similar

techniques were incorporated in current Intel hardware.

Aligned with our proposal, Albert Ou et al. (2014) [22]

added a hardware support for mixed-precision operations

in a decoupled vector-fetch data-parallel accelerator, called

Hwacha. Hwacha was enhanced with a configuration instruc-

tion (vsetfg) and operations on packed data. The configuration

instruction was designed to set the number of architectural

registers and their individual data type widths, by merging

subsequent positions according to configuration requirements.

The Load operations can fetch blocks of data and populate

those configured registers according to the data type. Because

the number of elements inside a register can be configured,

wide registers can be cast to smaller ones, improving the

performance of mixed-precision operations.

According to their experiments, the support for mixed-

precision processing in Hwacha results in 5.8% area overhead

and a speed up as high as 62.1% for a double-precision

baseline [22]. However, this solution was strictly designed for

a vector processor and requires the application to be rewritten

to exploit this hardware support.

Recently, Tagliavini et al. (2018) [7] accomplished signifi-

cant energy savings by incorporating non-standard sub-32-bits

FP formats. Using a library called FlexFloat to encode non-

standard type and the fpPrecisionTuning tool to search for the

best mixed-precision configuration. Their experimental results

show that up to 90% of FP operations could be safely scaled

down to 8-bit or 16-bit formats. Moreover, by leveraging

vectorization, the execution time was decreased by 12% and

memory accesses were reduced by 27% on average, leading
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to a reduction of energy consumption up to 30%.

Tagliavini et al. (2018) also presented a transprecision FP

unit extension for PULPino SoC [23]. This TFPU has support

for two non-standard floating-point formats (smallfloats), that

were explored in more details in their previous publica-

tions [7]. Their results show that, combining the hardware

support for SmallFloat with fpPrecisionTuning improved the

system performance by 15% to 25% and the energy efficiency

by 14% to 18%.

C. Polymorphic operations in hardware

In modern programming languages, most arithmetic oper-

ations mean different things according to the types of their

operands. Take as an example the expression below:

100 + 200 = 300 (1)

1.2 + 1.3 = 2.5 (2)

In this example, the plus sign will have a different behavior

depending on the type specified, requiring different instruc-

tions for each expression. Ambiguous operators of this sort

are polymorphic (Ad hoc polymorphism) as they can have

several forms depending on their arguments.

Channoh Kim et al. (2017), proposed the implementation

of polymorphic instructions in hardware to accelerate script

languages [24]. This new architecture calculates and checks

the dynamic type of each variable implicitly in hardware,

rather than explicitly in software. Thus, based on the TAG

information in the register file, the CPU is able to automati-

cally decide which unit should perform the correct operation.

Furthermore, according to experimental results, this new archi-

tecture achieves speed up of 11.2% for a JavaScript scripting

engine and 9.9% for Lua engine, demonstrating an interesting

potential in this technology.

III. TFPU

As explained in Section I, our main goal is to extend a

RISC-V floating-point unit with polymorphic operations and

transprecision capabilities. By default, the RISC-V ISA pro-

vides a set of 32 floating-point registers that can be accessed

in 32-bit (F extension), 64-bit (G extension) and 128-bit (Q

extension) mode. Encoded in the floating-point instruction,

there is a fixed bit field called FMT, that control if the

computation uses single-precision, double-precision or quad-

precision data. This design wastes part of the encoding space

that could be useful for others extensions - once the single-

precision, double-precision and quad-precision instruction set

are practically identical, differing only in the FMT field.

Our proposal unifies all floating-point operations into one

group of polymorphic instructions, optimizing the encoding

space. These instructions use the register content to decide

the precision, eliminating the need for cast operations, such

as fcvt.s, fcvt.d, and fcvt.q.
An overview of the TFPU architecture is presented in

Figure 1. In this example, we show the register file state

after executing 5 instructions in a scalar pipeline. The addx
and mulx are polymorphic operations that use the type stored

in each register to generate results; the value 1.5f, 3.25f

and 69332f are stored in memory. Once 1.5 and 3.25 can

be represented in half precision without loss, after a load

operation, these values are tagged with HP, allowing future

computations to be performed using less precise units.

The TFPU is divided into three main modules: PRF (Poly-

morphic Register File), PCTRL (Polymorphic Control Logic)

and TPU (Type Promotion Unit). The goal of PCTRL and

PRF is to enable polymorphic computations without changing

the LSU (Load Store Unit) and FPU (Floating-point Unit)

pipelines. While the TPU add support for transprecision and

approximated computing. In the following subsections, we

explain each part of our design with more details.

A. Polymorphic Register File

Different from a classic register file implementation, a

polymorphic register file stores the type and format of each

register in a tag field. In our design, the tag is used by

the PCTRL to select an appropriated precision to perform

computations.

The load instruction configures the tag automatically. For

example, when the CPU loads a single-precision value from

memory, using FLS instruction, it marks the register content

with an SP tag. Analogously, when a double-precision is

loaded using FLD, the tag value is set to DP. It is also possible

to configure the tag manually. We added a cast instruction that
converts the register’s content to a different format, changing

the precision and the data representation.

B. Polymorphic Control Logic

The PCTRL (Polymorphic Control Logic) is responsible

to convert the register content to a common format. It uses

a best-fit policy algorithm (BFP) to decide an appropriated

execution unit for each operation.

The BFP algorithm makes decisions based on the tag stored

in the register file. If two values are marked with the same tag,

no casting is required. However, if one value is tagged with

a more precise type or different representation, the PCTRL

casts the less precise type to a common format, then sends

both values to an appropriated execution pipeline.

The conversion between types is lightweight and straight-

forward. We expand the exponent field, without performing

any round-off operation, and set unnecessary bits to zero.

C. Type promotion unit

A floating-point number has two fundamental parts: one

that is directly related to accuracy and other that is directly

related to the precision. To better explain how transprecision

can affect the accuracy, take as an example the number 2126.
This number can be represented without any loss in a single-

precision format. However, once half-precision has only 5

exponent bits, the largest non-infinity value that can be rep-

resented using half-precision is 216. Thus, any half-precision
computation that can extrapolate the range between 215 and
2−14 could potentially decrease the accuracy. In addition, due

to a reduction in representation range, some operations may
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Fig. 1: Proposed TFPU design.

result in an underflow, overflow, positive infinity, negative

infinity, not a number or division by zero.

The TPU (Type promotion unit) is responsible for normal-

izing results, selecting an appropriate tag for each output and

intercepting IEEE 754 fault signals. Additionally, it protects

the system against the propagation of highly inaccurate results,

such as NaN, -INF and +INF.

The TPU takes different actions according to each IEEE

754 signal. When the execution unity produces an underflow

signal, the TPU upgrades the precision, clears the mantissa

and sets the exponent to the smallest possible value that is not

compatible with the previous tag. For example, if after a half-

precision operation an underflow happens, the TPU promotes

the type to single and changes the exponent to -15, once the

smallest representable exponent value in half-precision is -14.

When an infinity or overflow happens, the TPU upgrades

the precision and sets the mantissa to the maximum value.

It is also necessary to fix the exponent, setting it to the

maximum value that is not compatible with the previous tag.

For example, if after a single-precision operation an overflow

or infinity happens, the TPU promotes the type to double (DP)

and changes the exponent to 128, once the biggest exponent

value that can be represented in single-precision is 127.

The TPU uses the inexact signal to decide if we need to

promote the tag or stay in the same precision. If a zero signal

is received and the inexact signal is low, we downgrade the

tag. On the other hand, if an inexact signal is high and zero

signal is low, we upgrade the tag.

To illustrate how the inexact signal affects the precision,

suppose the TFPU needs to add two values, 32768 and 0.5.

Both values can be represented using half-precision without

any representation loss. However, if we add these numbers

using an IEEE 754 half-precision compatible unit, the result

will be 32768, instead of 32768.5 and the inexact signal will

be high. In this situation, future computations involving this

result have a high potential of increasing the accumulated error

especially if the result is used in expressions inside a loop.

When we use the inexact signal to guide promotions, an

addition of 32768 and 0.5 will continue to be 32768 instead

of 32768.5, but tagged as single-precision instead of half-

precision. The tag forces subsequent computations involving

the result to use more precise execution units.

D. Extending the RISC-V instruction set
We extended the RISC-V ISA with 6 new instructions (flh,

fsh, shpt, sspt, sdpt and cast). In addition, we also changed the

behavior of loads, stores and all arithmetic operations - adding

support for TAG information. The Table I has a summary of

all changes.

Instruction Syntax Description
flh flh fd, [addr] Loads 2 bytes and sets the TAG to HP.
flw flw fd, [addr] Loads 4 bytes and selects the best compatible TAG.
fld fld fd, [addr] Loads 8 bytes and selects the best compatible TAG.
flq flq fd, [addr] Loads 16 bytes and selects the best compatible TAG.
shpt shpt imm8 Configures a transition threshold for HP.
sspt sspt imm8 Configures a transition threshold for SP.
sdpt sdpt imm8 Configures a transition threshold for DP.
cast cast fd, tag Casts the register content to another format and sets the tag.
fsh fsh fd, [addr] Stores the half-precision value into memory.
fsw fsw fd, [addr] Converts value to single and stores it into memory.
fsd fsd fd, [addr] Converts value to double and stores it into memory.
fsq fsq fd, [addr] Converts value to quad and stores it into memory.

TABLE I: Transprecision instruction set.

For compatibility reasons we maintained the same RISC-V

opcodes. However, there is no difference in using a double,

single or quad instruction. When the transprecision hardware

is enabled, the TFPU decides what to do based on the tag

information, instead of using the FMT field.
The shpt, sspt, sdpt and spqt are instructions designed to

manually configure the transition between data types. This

threshold can be used by future TFPU implementations to

decide when it is an appropriated moment to change internal

data representation or increase precision.
By default, all operations in the range between 215 and 2−14

is tagged as half-precision and any value outside this range is

tagged with a higher precision. The shpt, for example, can
be used to configure different ranges such as 28 and 2−8

forcing numbers outside this scale to be mapped to a more

precise type. In Section V we show what happens when we

use different thresholds to control transitions.

IV. SIMULATION INFRASTRUCTURE

In order to estimate the potential of our TFPU design,

we have implemented an object-oriented support for RISC-V

floating-point units inside the Spike emulator. Our implemen-

tation abstracts the Spike’s internal details, providing a default

class (DefaultBehavior) that can be inherited and modified

as needed. Figure 2 presents an overview of our simulation

environment.
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Integrated with Spike, we also built an analysis infrastruc-

ture that automatically runs a set of 37 benchmarks, collecting

execution statistics and saving them in a database for further

verification.

We divided all benchmarks into two sets: approximated and

exact. The approximated set was used to measure the mean

relative error of each execution. These benchmarks generate

results that can be analyzed in order to determine the overall

precision and accuracy of each FPU implementation; the exact

set has more sophisticated benchmarks, that either perform a

self-test on the result or generate a right or wrong answer.

At the end of Spike execution, our infrastructure compares

the TFPU results with the statistics of the original IEEE 754

FPU. Based on the information stored in the database and

quality measurements, we can use SQL language to extract a

variety of useful statistics, including: exponent distribution;

instruction frequency; read and write access; total of type

promotions and demotions; total of zeros, infinities, overflows,

underflows, subnormal and normal computations; and many

others. Moreover, our infrastructure also generates a variety

of charts, in a paper ready format, simplifying the data

visualization.

V. RESULTS

We evaluated our proposal using applications from sev-

eral different suits, including PARSEC, CoreMark Pro, NAS,

MiBench, axbench, linuxbench and The Computer Language

Benchmarks Game. From each suit, we choose only applica-

tions that contain double-precision operations. The complete

list of benchmarks can be viewed in Table II.

Most approximated benchmarks were taken from related

works. This is the case of GSL and axbench sets: the GSL set

contains programs from Precimonious project, while axbench

is used for research involving approximate computing. Beyond

that, some applications were adapted to output computation

results, once by default, some applications print only the

running time or unnecessary information. This was the case

of fbench, linpack, n-body, fluidanimated and basicmath.

It is important to point out that some benchmarks used by

Precimonious are dependent of the obsolete Intel FPU 8087

supports, since the input files were encoded using 80-bit long

doubles types, rather than 128-bit quad-precision. Thus, we

modify all input files and all 8087 dependent codes - including

the ones inside the cov serializer - to an IEEE 754 compliant

version. In addition, the results of all modified gsl benchmarks

Benchmark Description

A
pp

ro
xi

m
at

ed
se

t

arclength Estimates the arc length of the function over the interval (0, pi).
simpsons Uses Simpson’s Rule for approximating the integral of a function between two limits.
gsl-sum Computes the extrapolated limit of series using a Levin u-transform.
gsl-roots Finds roots of arbitrary one-dimensional functions.
gsl-polyroots Evaluates a polynomial with real coefficients for complex variables.
gsl-gaussian Cumulative distribution functions.
gsl-fft Computes complex Radix-2 forward fast Fourier using gsl.
gsl-blas Operations on vectors and matrices.
gsl-bessel Bessel function computation.
fbench Optical design raytracing algorithm.
linpack Solves a dense system of linear equations.
basicmath Performs a variety of mathematical calculations.
mandelbrot Rendering a Mandelbrot fractal using a static number of iterations.
spectralnorm Calculate an eigenvalue using the power method.
nbody Model the orbits of Jovian planets.
swaptions Pricing of a portfolio of swaptions.
blackscholes Option pricing with Black-Scholes Partial Differential Equation.
fluidanimate Fluid dynamics for animation purposes with Smoothed Particle Hydrodynamics method.
fft Radix-2 Colley-Tykey fast Fourier implementation.
inversek2j Inverse kinematics for 2-joint arm.
jpeg JPEG encoding.
jmeint Triangle intersection detection.
c-ray-f Renders a complex 3D scene.

E
xa

ct
se

t

canneal Simulated cache-aware annealing to optimize routing cost of a chip design.
fasta Generates DNA sequences.
linear-alg A linear algebra routine derived from LINPACK.
loops Variety of kernels based on Livermore loops.
nnet Use a neural net to evaluate patterns.
radix2 This benchmark performs FFT with Radix2 on the input.
ffbench Fast Fourier transform of a square matrix of complex numbers.
is.W.x Integer Sort (uses a complex double-precision number generator).
ep.W.x Embarrassingly Parallel.
mg.W.x Multi-Grid on a sequence of meshes.
ft.W.x Discrete 3D fast Fourier Transform.
bt.W.x Block Tri-diagonal solver.
sp.W.x Scalar Penta-diagonal solver.
lu.W.x Lower-Upper Gauss-Seidel solver.

TABLE II: List of benchmarks used

are equivalent to the original results, once there was no need

to use quad-precision, since all applications were casting types

to single during initialization of their kernels.

The precision error analysis methodology is based on

axbench. We used the Mean Absolute Percentage Error

(MAPE) to determine the quality of the numerical results and

the Root Mean Square Error (RMSE) for images. The errors

were normalized on a scale of 0 to 1. Where 0 represents the

minimum error in relation to the original program and 1 is the

maximum possible error. In case of execution failures, even if

most of the result is correct, errors are rounded to 1.

A. Tested Configurations

There are different ways to configure our TFPU. For this

exploration, we tested our design using 32 different setups,

described below:

• HP TFPU: This TFPU executes all operations using half-
precision. Whenever a value is loaded from memory, it

is automatically converted to 16 bits. Similarly, when we

need to store data into memory, the data is converted back

to the original precision, using the FMT field as a guide.

This FPU is equivalent to change all double-precision

and single-precision operations for half-precision. For a

TFPU with half-precision support, executing everything

in half-precision with 0 error would be the best result in

terms of performance.

• SP TFPU: This TFPU is similar to the HP TFPU, but

it uses single-precision instead of half-precision. Thus, if

an application requires only floats (single-precision), the

result generated by this FPU will be identical to an IEEE

754 implementation.

• Strict TFPU (ST): This TFPU is implemented according
to the proposed architecture in Section III. Whenever a
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Fig. 3: Precision distribution and relative error of each FPU configuration.

load or casting occurs, the data is converted to a smaller

format, capable of representing the value without loss.

This TFPU is extremely conservative, promoting the type

whenever an inexact signal is generated by the execution

unit.

• Approximated TFPU (AP): This TFPU uses only the

dynamic range to promote or demote types. Therefore,

it tends to maximize the number of computations using

half-precision, changing the format only when it is not

possible to represent the value within a smaller range.

• Relaxed TFPU (RL): This TFPU is similar to the ST

TFPU. The only difference is that it does not use the

inexact signal to promote types - promotions are solely

guided by the mantissa and transition threshold.

We also tested each configuration using five thresholds and

two precision ranges. The DL threshold is standard range. The

E25, E50, E75 and E100 are the proportions used to define the

transition of each type. For example, with E25 the TFPU will

tag values between 24 and 2−4 (25% of 16) to half-precision;

232 and 2−32 (25% of 128) to single-precision; and 2256 and
2−256 (25% of 1024) to double-precision.
We tested only two precision ranges: SP-QP and HP-QP.

SP-QP allows transitions between single-precision and quad-

precision. Similarly, HP-QP allows any transition between

half-precision and quad-precision.

B. Approximated results
In Figure 3 we show the precision distribution and the

mean error of all approximated benchmarks. All errors were

normalized between 0 and 1 to avoid interference, considering

that some benchmarks had errors above 100%. As expected,

the approximated configuration can execute more operations in

half and single precision than the strict and relaxed versions.
Without compiler support and user guidance, the strict and

relaxed configurations were unable to produce relevant results,

once most operations are still executed in double-precision.

However, it is important to notice that most strict and relaxed

configurations exhibit negligible errors in most situations -

with errors below 0.01%.
According to our experiments, the variation in the exponent

transition can have a relevant impact in error and performance.

Thus, we believe it is interesting to let the user control

the precision by changing these parameters according to the

application dynamic range.

Fig. 4: Best results with less than 5% error.

In Figure 4 we show the results of the best configuration for

each approximated benchmark. To create this graphic we con-

sidered all FPUs, including the SP, HP and the original IEEE

754 FPU. The ranking was calculated based on the theoretical

throughput of a shared 64 bit vector unit - considering that

we can execute in three different modes, like modern CPUs:

4x16, 2x32 and 1x64.

To discard highly inaccurate results, we set the maximum

acceptable error to 5%. As we can see, depending on the

TFPU configuration, is possible to improve the theoretical

throughput significantly. All benchmarks had mapping im-

provements, without causing any relevant accuracy loss or

increasing instruction count.

The best results were found in jpeg and gsl-blass, They

were able to execute almost 100% of all double-precision

instructions in half-precision, with errors below 0.1%. The

worst result was gsl-gaussian, that mapped about 44% of all

double-precision instructions to single-precision.

C. Exact results

To measure how close our execution is to the original IEEE

754 FPU, we ran a set of benchmarks that performs self verifi-

cation. Some of them are highly sensible to precision variation.
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The is.W.x benchmark, for example, uses a double-precision

variable to generate pseudo aleatory numbers. Therefore, any

alteration in the mantissa, can lead to a different result.
In addition, some benchmarks perform checksums on results

or measure the RMSE distance of the output. As we are

losing some precision by executing operations in less precise

types, the transprecision will also affect the RMSE calculation,

leading to a threshold very close to the original, but not equal.
Naturally, we do not expect our solution to work with every

application, since we are not following the IEEE 754 guide.

However, we expect the application behavior to be very close

to an execution using IEEE 754 FPU.
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linearalg � � � � � � � � � � � � � � � � � � � � � � � � � �
ft.W.x
mg.W.x � � � � � � � � � � � � � �
sp.W.x
is.W.x
ep.W.x � � � � � � � � � � � � � � � � � � � �
lu.W.x � � � � � � � � � �
bt.W.x
canneal � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
ffbench � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
fasta � � � � � � � � � � � � � � � � � � � � � � � � � �
loops-all � � � � � � � � � � � � � � � � � �
nnet
radix2
Successes 0 3 2 7 7 2 6 6 2 5 5 2 5 5 2 7 7 5 8 8 4 8 8 4 8 8 4 8 8 5 8 8

TABLE III: Exact results

In Table III we present our results in a set of benchmarks

that performs self checking. It is important to point out a

failure does not mean the application generated a wrong result.

It is just that the result is neither inside a very restrictive

precision requirement or equal bitwise.
Our approximated configuration achieved positive results

in most situations. In ffbench, for example, we were able to

map 98.45% of all double-precision variables to half-precision,

passing in all self validation tests. Yet, even in this benchmark,

that uses a more relaxed error verification, if we try to use

the SP or HP configurations without performing transitions

between types, the application is going to report hundreds of

faults in the result.
Based on this experiment, we can conclude that our trans-

precise solution is safer than converting all double-precision

variables to single or half, once our TFPU was able to succeed

in situations where the SP and HP FPU did not.

D. Case study

(a) double-precision (b) single-precision (c) trans-precision

Fig. 5: Results of three different executions of c-ray-f bench.

In Figure 5 we have a 3D fractal rendered using three

different executions of c-ray-f benchmark. The Figure 5a is

the result of the original c-ray-f using an IEEE 754 FPU. The

Figure 5b we present the result of the single-precision version

of c-ray-f also running in an IEEE 754 FPU. The Figure 5c

shows the result of the double precision version of c-ray-f

using the SP/QP AP DE configuration.

Based on our experimental results, c-ray-f uses a dynamic

range between 249 to 2−1023, but 99.99% of all computations

happens in a number scale between 2127 and 2−126. This

means that, during the majority of the execution time, the FPU

uses less than 8 bits of exponent, wasting at least 3 bits of the

11 bits exponent encode. Even thought a substantial part of the

computation could be performed using float data types, if we

try to run this application using single-precision variables it

will result in 29.3% RMSE in relation to the original double-

precision version, generating the image presented in Figure 5b.

Once our TFPU only performs casting operations when

the data can fit in the target register, the SP/QP AP DE

configuration was able to execute 97.8% of all instructions

in single-precision, resulting in an image with 3.6% error. In

the Figure 5c, we see an image almost identical to the original,

but it uses less hardware resources than the double-precision

version and is 8 times more precise than the single-precision

version. Moreover, our TFPU was able to automatically op-

timize the original double-precision application, without any

human intervention.

VI. DISCUSSION

According to our investigation, CRAFT HPC [11] is a

mixed-precision tuning framework capable of reaching an op-

timal floating-point balance, without hardware support. How-

ever, as discussed in Section II-A, its searching technique is

not practical in real life applications, due to a high running

time. PROMISE [12], Precimonius [13] and fpPrecisionTun-

ing [14], on the other hand, are faster than CRAFT HPC,

but they provide small gains. Daisy [16] and FPTune [9]

are the only tools capable of guaranteeing a minimal error

control, but the speed up improvements are arguably small,

when compared against hardware solutions. The Hwanch [22]

and cuda-half2 [19] can achieve higher speed ups, but they are

not designed for general purpose CPUs. Finally, we have the

Tagliavini’s solution [23], a hardware-assisted infrastructure

for a general purpose CPU, that requires compilation and

profiling to properly work.

Our proposal differs from previous publications in four

fundamental ways: I. it explores the fact that precision require-

ments vary during each computation; II. it makes possible to

better use hardware resources by changing precision require-

ments during runtime; III. It eliminates the need for casting

operations between floating-point types; and most importantly,

IV. This is the first attempt to design a Tranprecision FPU with

polymorphic capabilities.

It is important to notice that our solution does not require

direct changes in the source code to work. However, the

compiler can be modified to generate binaries to exploit our

transprecision and polymorphic characteristics. As an exam-

ple, a mixed-precision application could remove all casting
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operations, letting our TFPU decide the correct precision

- solving an important limitation of most mixed-precision

software proposals. In addition, we can combine our solution

with tools like fpPrecisionTuning [14], Precimonius [13] or

FPTuner [9] to improve memory access and space.

Currently, we are implementing our TFPU design in The

Berkeley Out-of-Order Machine (BOOM) to obtain more ad-

vanced statistics, such as area, maximum operation frequency

and energy consumption. We believe that our modifications

have the potential to improve performance, once many publica-

tions have demonstrated energy and speed up improvements on

joining half-precision operations together and executing them

in parallel using single-precision units [7], [19]–[21].

In the future, we intend to use our simulation environment

to test different hardware changes to improve performance,

including: adding a precision predictor hardware, to decide the

best moment to promote types; and an intermediate floating-

point representation, to accelerate type conversions.

VII. CONCLUSION

In this paper, we presented the first steps toward a polymor-

phic floating-point unit with transprecision capabilities. Unlike

previous works, our optimization is done at runtime, without

requiring programs to be recompiled or profiled in order to

decide an appropriated precision. In addition, our TFPU is

very simple and hardware friendly - remapping only controls

and data signals to modify the floating-point pipeline behavior.

In order to evaluate our proposal, we have developed a

sophisticated simulation environment on top of Spike. The

support infrastructure runs automatically a set of 37 double-

precision benchmarks, collecting detailed statistics of the FPU.

This new infrastructure will help future floating-point hard-

ware and software explorations, simplifying approximated-

computing and transprecise investigations.

According to our experimental results, our design is able to

perform a substantial part of all double-precision operations in

single-precision and half-precision, without compromising the

application execution flow. In some benchmarks we were able

to execute more than 95% of all double-precision operations in

half-precision, resulting in less than 5% error. In addition, we

demonstrated that by using exception signals, our solution can

even pass in benchmarks that perform self-checking, achieving

mapping results close to related works.
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