
Redbooks

Front cover

IBM POWER8 High-Performance
Computing Guide
IBM Power System S822LC (8335-GTB) Edition

Dino Quintero

Joseph Apuzzo

John Dunham

Mauricio Faria de Oliveira

Markus Hilger

Desnes Augusto Nunes Rosario

Wainer dos Santos Moschetta

Alexander Pozdneev

International Technical Support Organization

IBM POWER8 High-Performance Computing Guide:
IBM Power System S822LC (8335-GTB) Edition

May 2017

SG24-8371-00

© Copyright International Business Machines Corporation 2017. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (May 2017)

This edition applies to:
IBM Platform LSF Standard 10.1.0.1
IBM XL Fortran v15.1.4 and v15.1.5 compilers
IBM XLC/C++ v13.1.2 and v13.1.5 compilers
IBM PE Developer Edition version 2.3
Red Hat Enterprise Linux (RHEL) 7.2 and 7.3 in little-endian mode

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Notices . ix
Trademarks .x

Preface . xi
Authors. xi
Now you can become a published author, too! . xiii
Comments welcome. xiv
Stay connected to IBM Redbooks . xiv

Chapter 1. IBM Power System S822LC for HPC server overview 1
1.1 IBM Power System S822LC for HPC server . 2

1.1.1 IBM POWER8 processor . 3
1.1.2 NVLink . 4

1.2 HPC system hardware components . 5
1.2.1 Login nodes . 6
1.2.2 Management nodes . 6
1.2.3 Compute nodes. 7
1.2.4 Compute racks . 7
1.2.5 High-performance interconnect. 8
1.2.6 Management and operating system . 8
1.2.7 Parallel file system . 10

1.3 HPC system software components . 11
1.3.1 System software . 12
1.3.2 Application development software . 16
1.3.3 Application software . 18

1.4 HPC system solution. 19
1.4.1 Compute nodes. 19
1.4.2 Management node . 19
1.4.3 Login node . 19
1.4.4 Combining the management and the login node . 19
1.4.5 Parallel file system . 20
1.4.6 High-performance interconnect switch . 20

Part 1. Developers guide . 21

Chapter 2. Compilation, execution, and application development. 23
2.1 Compiler options . 24

2.1.1 IBM XL compiler options . 24
2.1.2 GCC compiler options. 27

2.2 Porting applications to IBM Power Systems . 29
2.3 IBM Engineering and Scientific Subroutine Library . 34

2.3.1 ESSL Compilation in Fortran, XL C/C++, and GCC/G++ 35
2.3.2 ESSL example . 38

2.4 Parallel ESSL . 40
2.4.1 Program development. 41
2.4.2 Using GPUs with Parallel ESSL . 43
2.4.3 Compilation . 47

2.5 Using POWER8 vectorization . 49
2.5.1 AltiVec operations with GNU GCC . 50
© Copyright IBM Corp. 2017. All rights reserved. iii

2.5.2 AltiVec operations with IBM XL. 51
2.6 Development models . 54

2.6.1 OpenMP programs with the IBM Parallel Environment. 54
2.6.2 CUDA C programs with the NVIDIA CUDA Toolkit . 57
2.6.3 OpenACC . 61
2.6.4 IBM XL C/C++ and Fortran offloading. 64
2.6.5 MPI programs with IBM Parallel Environment v2.3. 70
2.6.6 Hybrid MPI and CUDA programs with IBM Parallel Environment 75
2.6.7 OpenSHMEM programs with the IBM Parallel Environment. 79
2.6.8 Parallel Active Messaging Interface programs . 80
2.6.9 MPI programs with IBM Spectrum MPI . 81
2.6.10 Migrating from IBM PE Runtime Edition to IBM Spectrum MPI 82
2.6.11 Using Spectrum MPI . 83

Chapter 3. Running parallel software, performance enhancement, and scalability
testing . 89

3.1 Controlling the running of multithreaded applications . 90
3.1.1 Running OpenMP applications . 90
3.1.2 Setting and retrieving process affinity at run time . 93
3.1.3 Controlling NUMA policy for processes and shared memory 93

3.2 Performance enhancements and scalability tests . 94
3.2.1 ESSL execution in multiple CPUs and GPUs . 94
3.2.2 OpenACC execution and scalability . 101
3.2.3 XL Offload execution and scalability . 101

3.3 Using IBM Parallel Environment v2.3 . 104
3.3.1 Running applications. 104
3.3.2 Managing application . 110
3.3.3 Running OpenSHMEM programs . 111

3.4 Using the IBM Spectrum LSF . 112
3.4.1 Submit jobs . 112
3.4.2 Manage jobs . 117

3.5 Running tasks with IBM Spectrum MPI. 118

Chapter 4. Measuring and tuning applications . 121
4.1 Effects of basic performance tuning techniques . 122

4.1.1 Performance effect of a Rational choice of an SMT mode 123
4.1.2 Effect of optimization options on performance . 130
4.1.3 Favorable modes and options for applications from the NPB suite 136
4.1.4 Importance of binding threads to logical processors. 136

4.2 General methodology of performance benchmarking . 137
4.2.1 Defining the purpose of performance benchmarking . 137
4.2.2 Benchmarking plans . 139
4.2.3 Defining the performance metric and constraints . 139
4.2.4 Defining the success criteria . 139
4.2.5 Correctness and determinacy . 140
4.2.6 Keeping the log of benchmarking . 140
4.2.7 Probing the scalability . 142
4.2.8 Evaluation of performance on a favorable number of cores 143
4.2.9 Evaluation of scalability. 144
4.2.10 Conclusions . 144
4.2.11 Summary. 145

4.3 Sample code for the construction of thread affinity strings . 145
4.4 ESSL performance results . 149
4.5 GPU tuning . 154
iv IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

4.5.1 Power Cap Limit . 154
4.5.2 CUDA Multi-Process Service . 156

4.6 Application development and tuning tools. 159
4.6.1 Parallel Performance Toolkit . 159
4.6.2 Parallel application debuggers . 173
4.6.3 Eclipse for Parallel Application Developers. 174
4.6.4 NVIDIA Nsight Eclipse Edition for CUDA C/C++. 176
4.6.5 Command-line tools for CUDA C/C++ . 182

Part 2. Administrator’s guide . 191

Chapter 5. Node and software deployment . 193
5.1 Software stack. 194
5.2 System management . 194

5.2.1 Frequently used commands with the IPMItool . 194
5.2.2 Boot order configuration . 196
5.2.3 System firmware upgrade . 198

5.3 xCAT overview . 201
5.3.1 xCAT cluster: Nodes and networks. 201
5.3.2 xCAT database: Objects and tables . 203
5.3.3 xCAT node booting . 203
5.3.4 xCAT node discovery . 204
5.3.5 xCAT BMC discovery . 205
5.3.6 xCAT OS installation types: Disks and state. 205
5.3.7 xCAT network interfaces: Primary and additional . 206
5.3.8 xCAT software kits . 206
5.3.9 xCAT synchronizing files. 207
5.3.10 xCAT version . 207
5.3.11 xCAT scenario . 207

5.4 Initial xCAT Management Node installation on S812LC . 208
5.4.1 RHEL server . 209
5.4.2 xCAT packages. 215
5.4.3 Configuring more network interfaces . 217
5.4.4 Host name and aliases . 219
5.4.5 xCAT networks . 219
5.4.6 DNS server . 221
5.4.7 DHCP server . 223
5.4.8 IPMI authentication credentials . 224

5.5 xCAT node discovery . 225
5.5.1 Verification of network boot configuration and genesis image files. 226
5.5.2 Configuring the DHCP dynamic range . 227
5.5.3 Configuring BMCs to DHCP mode . 228
5.5.4 Definition of temporary BMC objects. 230
5.5.5 Defining node objects . 231
5.5.6 Configuring host table, DNS, and DHCP servers . 233
5.5.7 Booting into Node discovery . 234

5.6 xCAT Compute Nodes (stateless). 237
5.6.1 Network interfaces . 237
5.6.2 RHEL server . 244
5.6.3 CUDA Toolkit . 247
5.6.4 Mellanox OFED. 249
5.6.5 XL C/C++ runtime libraries . 251
5.6.6 XL Fortran runtime libraries. 253
 Contents v

5.6.7 Advance Toolchain runtime libraries . 254
5.6.8 PGI runtime libraries . 255
5.6.9 SMPI . 257
5.6.10 PPT . 258
5.6.11 ESSL. 259
5.6.12 PESSL . 260
5.6.13 Spectrum Scale (formerly GPFS) . 261
5.6.14 IBM Spectrum LSF . 266
5.6.15 Synchronize configuration files . 279
5.6.16 Generating and packing the image . 280
5.6.17 Node provisioning . 281
5.6.18 Postinstallation verification . 282

5.7 xCAT Login Nodes (stateful) . 285

Chapter 6. Cluster monitoring and health checking . 289
6.1 Basic commands. 290
6.2 IBM Spectrum LSF tools for job monitoring . 292

6.2.1 General information about clusters . 293
6.2.2 Getting information about hosts . 294
6.2.3 Getting information about jobs and queues . 296
6.2.4 Administering the cluster. 297

6.3 Using the BMC for node monitoring . 300
6.4 Using nvidia-smi tool for GPU monitoring . 302

6.4.1 Information about jobs on GPU. 303
6.4.2 All GPU details . 303
6.4.3 Compute modes . 308
6.4.4 Persistence mode . 309
6.4.5 More information . 310

6.5 Diagnostic and health check framework . 310
6.5.1 Installation. 311
6.5.2 Configuration. 312
6.5.3 Usage . 314
6.5.4 Adding tests . 315

Part 3. Evaluation and system planning guide . 317

Chapter 7. Hardware components . 319
7.1 Server features . 320

7.1.1 Minimum features . 321
7.1.2 System cooling . 322

7.2 NVIDIA Tesla P100 . 324
7.3 Operating environment . 325
7.4 Physical package . 326
7.5 System architecture . 327
7.6 POWER8 processor . 329

7.6.1 POWER8 processor overview. 329
7.6.2 POWER8 processor core . 330
7.6.3 Simultaneous multithreading. 331
7.6.4 Memory access. 332
7.6.5 On-chip L3 cache innovation and intelligent cache. 333
7.6.6 L4 cache and memory buffer . 334
7.6.7 Hardware transactional memory . 335

7.7 Memory subsystem . 335
7.7.1 Memory riser cards . 335
vi IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

7.7.2 Memory placement rules. 336
7.7.3 Memory bandwidth . 337

7.8 POWERAccel . 338
7.8.1 PCIe . 338
7.8.2 CAPI . 339
7.8.3 NVLink . 341

7.9 System bus . 342
7.10 PCI adapters . 343

7.10.1 Slot configuration . 343
7.10.2 LAN adapters . 344
7.10.3 Fibre Channel adapters . 344
7.10.4 CAPI-enabled InfiniBand adapters . 345
7.10.5 Compute intensive accelerator . 345
7.10.6 Flash storage adapters . 345

7.11 System ports . 345
7.12 Internal storage . 346

7.12.1 Disk and media features . 347
7.13 External I/O subsystems . 348

7.13.1 BMC . 348
7.14 Mellanox InfiniBand. 349
7.15 IBM System Storage . 349

7.15.1 IBM Storwize family. 349
7.15.2 IBM FlashSystem family . 349
7.15.3 IBM XIV Storage System . 350
7.15.4 IBM Elastic Storage Server . 350

Chapter 8. Software stack . 351
8.1 System management . 352
8.2 OPAL firmware . 352
8.3 xCAT . 353
8.4 RHEL server . 353
8.5 NVIDIA CUDA Toolkit . 353
8.6 Mellanox OFED for Linux . 354
8.7 IBM XL compilers, GCC, and Advance Toolchain . 355

8.7.1 XL compilers . 355
8.7.2 GCC and Advance Toolchain . 356

8.8 IBM Spectrum MPI . 356
8.8.1 IBM Parallel Performance Toolkit for POWER . 357

8.9 IBM Engineering and Scientific Subroutine Library and IBM Parallel ESSL 357
8.10 IBM Spectrum Scale (formerly IBM GPFS). 358
8.11 IBM Spectrum LSF (formerly IBM Platform LSF) . 359

Appendix A. ISV Applications . 361
Application software . 362

Bioinformatics . 362
OpenFOAM. 363
NAMD program . 372

Appendix B. Additional material . 377
Locating the Web material . 377
Using the Web material . 377

System requirements for downloading the Web material . 377
Downloading and extracting the Web material . 378
 Contents vii

Related publications . 379
IBM Redbooks . 379
Other publications . 379
Online resources . 379
Help from IBM . 380
viii IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2017. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

developerWorks®
Easy Tier®
EnergyScale™
FDPR®
GPFS™
IBM®
IBM Blue™
IBM Elastic Storage™
IBM FlashSystem®
IBM Spectrum™

IBM Spectrum Scale™
LSF®
PartnerWorld®
POWER®
Power Systems™
Power Systems Software™
POWER8®
PowerHA®
PowerLinux™
PowerPC®

Rational®
Real-time Compression™
Redbooks®
Redbooks (logo) ®
Storwize®
System Storage®
SystemMirror®
XIV®

The following terms are trademarks of other companies:

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Other company, product, or service names may be trademarks or service marks of others.
x IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication documents and addresses topics to provide
step-by-step customizable application and programming solutions to tune application and
workloads to use IBM Power Systems™ hardware architecture. This publication explores,
tests, and documents the solution to use the architectural technologies and the software
solutions that are available from IBM to help solve challenging technical and business
problems.

This publication also demonstrates and documents that the combination of IBM
high-performance computing (HPC) solutions (hardware and software) delivers significant
value to technical computing clients who are in need of cost-effective, highly scalable, and
robust solutions.

First, the book provides a high-level overview of the HPC solution, including all of the
components that makes the HPC cluster: IBM Power System S822LC (8335-GTB), software
components, interconnect switches, and the IBM Spectrum™ Scale parallel file system.
Then, the publication is divided in three parts: Part 1 focuses on the developers, Part 2
focuses on the administrators, and Part 3 focuses on the evaluators and planners of the
solution.

The IBM Redbooks publication is targeted toward technical professionals (consultants,
technical support staff, IT Architects, and IT Specialists) who are responsible for delivering
cost-effective HPC solutions that help uncover insights from vast amounts of client’s data so
they can optimize business results, product development, and scientific discoveries.

Authors

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Poughkeepsie Center.

Dino Quintero is a Complex Solutions Project Leader and an IBM Level 3 Certified Senior IT
Specialist with the ITSO in Poughkeepsie, New York. His areas of expertise include enterprise
continuous availability, enterprise systems management, system virtualization, technical
computing, and clustering solutions. He also is an Open Group Distinguished IT Specialist.
Dino holds a Master of Computing Information Systems degree and a Bachelor of Science
degree in Computer Science from Marist College.

Note: Throughout the book, the $ sign is used to indicate the beginning of a shell
command. This sign was chosen to make it easier for readers to distinguish comments
(indicated by a # sign) from commands.

The authors do not explicitly differentiate between super user or normal user privileges.
Instead, the authors assume that the reader knows that most administration task are done
as a super user. Other tasks, such as compiling and debugging code or job submission,
are normally done as a non-privileged user.
© Copyright IBM Corp. 2017. All rights reserved. xi

Joseph Apuzzo is an Administrator of HPC clusters at the IBM Poughkeepsie Lab in New
York. He has been with IBM since 1998, but has been working with Linux since 1993 (starting
with Yggdrasil Linux with kernel 0.98.1). His tenure at IBM has been focused on HPC
software, which started with PSSP, IBM GPFS™ and most recently xCAT. This book is his
second IBM Redbooks publication for IBM. He holds a Master’s degree in Computer Science,
with an undergraduate degree in Electrical Engineering. He is the Inventor of code coverage
methods for testing of modular software.

John Dunham is a Software Developer for Platform Computing & IBM Power Systems
Software™ in Poughkeepsie, New York. He joined IBM full time in 2015 after an internship for
nearly three years in his undergraduate program. He has acted as a System Administrator for
the Poughkeepsie Lab and worked as a C/C++ programmer. He holds a Master’s degree in
Game Design and Development from RIT (2015) and Bachelor’s Degree in Computer
Science from Marist (2012).

Mauricio Faria de Oliveira is an Advisory Software Engineer at the Linux Technology Center
at IBM Brazil. His areas of expertise include Linux performance analysis and optimization,
Debian and Ubuntu for IBM PowerPC® 64-bit Little-Endian, and Multipath I/O on IBM Power
and OpenPower Systems. He also worked with official benchmark publications for Linux on
IBM Power Systems and early development (bootstrap) of Debian on PowerPC 64-bit
Little-Endian. Mauricio holds a Master of Computer Science and Technology degree and a
Bachelor of Engineering degree in Computer Engineering from Federal University of Itajuba,
Brazil.

Markus Hilger is an IT Specialist for HPC and HPSS Systems in Germany. He was a
corporate student with IBM before he joined IBM in 2014. His areas of expertise include
system administration and monitoring and energy-efficiency characterization of large HPC
clusters. He also works for the Leibniz Supercomputing Centre, servicing the warm-water
cooled SuperMUC. He holds a degree in Business Information Technology. This book is his
second IBM Redbooks publication.

Desnes Augusto Nunes Rosario is a Staff Software Engineer at the Linux Technology
Center, Brazil. He has three years of experience working on Embedded Linux development
and customization for multiple architectures at IBM. He holds a Bachelor degree in Computer
and Automation Engineering, an Engineering Specialist degree in Industrial Automation, and
a Master degree in Electrical and Computer Engineering from Universidade Federal do Rio
Grande do Norte (UFRN). His areas of expertise include software development and
packaging for Linux, parallel CPU/GPU algorithms design, descriptive hardware in FPGAs,
and basic electronics and industrial automation.

Wainer dos Santos Moschetta is a Staff Software Engineer in the IBM Linux Technology
Center, Brazil. He initiated and formerly led the IBM Software Development Kit (SDK) project
for the IBM PowerLinuxTM project. He has more than seven years of experience with
designing and implementing software development tools for Linux on IBM Power Systems.
Wainer holds a Bachelor degree in Computer Science from the University of São Paulo. He
co-authored several IBM Redbooks publications: IBM Parallel Environment (PE) Developer
Edition, SG24-8075, Performance Optimization and Tuning Techniques for IBM Power
Systems processors, including IBM POWER8, SG24-8171, and Implementing an IBM
High-Performance Computing Solution on IBM POWER8, SG24-8264. He also has published
articles and videos for the IBM developerWorks® website, and contributes to the IBM Linux
on Power technical community blog.
xii IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Alexander Pozdneev is a Research Software Engineer at IBM Science and Technology
Center, Moscow, Russia. He has 12 years of experience in HPC. He holds a Ph.D. degree in
Mathematical Modeling, Numerical Methods, and Software from Lomonosov Moscow State
University. His areas of expertise include parallel computing and application performance
optimization.

Thanks to the following people for their contributions to this project:

Wade Wallace
International Technical Support Organization, Poughkeepsie Center

Joan McComb
Fernando Pizzano
Duane Witherspoon
Nina Wilner Volgl
IBM US

Luis Bolinches
IBM Finland

Rafael Peria De Sene
Roberto Guimaraes Dutra De Oliveira
Alisson Linhares de Carvalho
IBM Brazil

Ettore Tiotto
IBM Canada

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xiv IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Chapter 1. IBM Power System S822LC for
HPC server overview

This chapter describes the IBM Power System S822LC for HPC server and the IBM
high-performance computing (HPC) solution. This chapter also includes the following topics:

� 1.1, “IBM Power System S822LC for HPC server” on page 2
� 1.2, “HPC system hardware components” on page 5
� 1.3, “HPC system software components” on page 11
� 1.4, “HPC system solution” on page 19

For more information about IBM Systems hardware and software for high-performance
computing, see the IBM Power Systems website.

1

© Copyright IBM Corp. 2017. All rights reserved. 1

http://www.ibm.com/systems/power/hardware/hpc.html

1.1 IBM Power System S822LC for HPC server

IBM Power System S822LC for HPC server (8355-GTB) includes the following features:

� Powerful IBM POWER8® processors that offer 16 cores at 3.259 GHz with 3.857 GHz
turbo performance or 20 cores at 2.860 GHz with 3.492 GHz turbo.

� A 19-inch rack-mount 2U configuration.

� NVIDIA NVLink technology for exceptional processor-to-accelerator intercommunication.

� Four dedicated connectors for the NVIDIA Tesla P100 GPU.

This system is the first IBM Power Systems offering with the NVIDIA NVLink Technology,
which removes graphics processing unit (GPU) computing bottlenecks by using the
high-bandwidth and low-latency NVLink interface from CPU-to-GPU and GPU-to-GPU. This
feature unlocks new performance and new applications for accelerated computing.

The Tesla P100 is a powerful and architecturally complex GPU accelerator architecture build.
It features a 15.3 billion transistor GPU, a new high-performance interconnect that greatly
accelerates GPU peer-to-peer and GPU-to-CPU communications, new technologies to
simplify GPU programming, and exceptional power efficiency.

The Tesla P100 includes the following key features:

� Extreme performance

Powering high-performance computing, deep learning, and many more GPU computing
areas.

� NVLink

NVIDIA’s new high-speed, high-bandwidth interconnect for maximum application
scalability.

� HBM2

Fast, high-capacity, extremely efficient chip-on-wafer-on-substrate (CoWoS) stacked
memory architecture.

� Unified memory, compute preemption, and new artificial intelligence (AI) algorithms

Significantly improved programming model and advanced AI software that is optimized for
the Pascal architecture.

� 16 nm FinFET

Enables more features, higher performance, and improved power efficiency.

The Power System S822LC is ideal for clients that need more processing power and
increased workload density with reduced data center floor space requirements. It offers a
modular design to scale from a single rack to hundreds of racks, simplicity of ordering, and a
strong innovation road map for GPUs.
2 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

1.1.1 IBM POWER8 processor

The POWER8 processor that is used in the 8335-GTB is manufactured by using the IBM 22
nmsilicon-on-insulator (SOI) technology. Each chip is 65 mm2 and contains over 4.2 billion
transistors. The POWER8 chip can contain up to 12 cores, 2 memory controllers, PCIe Gen3
I/O controllers, and an interconnection system that connects all components within the chip.

Each core features 512 KB of L2 cache, and all cores share 96 MB of L3 (8 MB of L3 cache
per core) that is embedded DRAM (eDRAM). The interconnect also extends through module
and system board technology to other POWER8 processors, DDR4 memory, and various I/O
devices.

POWER8 processor-based systems use memory buffer chips to interface between the
POWER8 processor and DDR4 memory. Each buffer chip also includes an L4 cache to
reduce the latency of local memory accesses.

The following features augment the performance of the POWER8 processor:

� Support for DDR4 memory through memory buffer chips that offload the memory support
from the POWER8 memory controller.

� An L4 cache within the memory buffer chip that reduces the memory latency for local
access to memory behind the buffer chip. The operation of the L4 cache is not apparent to
applications that are running on the POWER8 processor. Up to 128 MB of L4 cache can
be available for each POWER8 processor.

� Hardware transactional memory.

� On-chip accelerators, including on-chip encryption, compression, and random number
generation accelerators.

� CAPI, which allows accelerators that are plugged into a PCIe slot to access the processor
bus by using a low-latency, high-speed protocol interface.

� Adaptive power management.

The Linux kernel sees a thread as an equivalent CPU. An Intel server with two processors
has approximately 36 cores (with two threads per core), which yields only 72 threads. An IBM
POWER8 server with two processors can have up to 24 cores (with eight threads per core),
which yields a staggering 192 threads. When you run the Linux command lscpu, you see the
output that is shown in Example 1-1.

Example 1-1 Linux lscpu command output

$ lscpu
Architecture: ppc64le
Byte Order: Little Endian
CPU(s): 192
On-line CPU(s) list: 0-191
Thread(s) per core: 8
Core(s) per socket: 12
Socket(s): 2
NUMA node(s): 2
Model: 1.0 (xxx)
Model name: POWER8NVL (raw), altivec supported
L1d cache: 64K
L1i cache: 32K
L2 cache: 512K
L3 cache: 8192K
Chapter 1. IBM Power System S822LC for HPC server overview 3

NUMA node0 CPU(s): 0-95
NUMA node1 CPU(s): 96-191

Hardware transactional memory
Transactional memory is an alternative to lock-based synchronization. It attempts to simplify
parallel programming by grouping read and write operations and running them as a single
operation. Transactional memory is similar to database transactions, where all shared
memory accesses and their effects are committed together or discarded as a group.

All threads can enter the critical region simultaneously. If there are conflicts in accessing the
shared memory data, threads try accessing the shared memory data again or are stopped
without updating the shared memory data. Therefore, transactional memory is also called a
lock-free synchronization.

Transactional memory can be a competitive alternative to lock-based synchronization.
Transactional memory provides a programming model that simplifies parallel programming. A
programmer delimits regions of code that access shared data and the hardware runs these
regions atomically and in isolation, buffers the results of individual instructions, and attempts
to run again if isolation is violated. Generally, transactional memory allows programs to use a
programming style that is close to coarse-grained locking to achieve performance that is close
to fine-grained locking.

Most implementations of transactional memory are based on software. The POWER8
processor-based systems provide a hardware-based implementation of transactional memory
that is more efficient than the software implementations and requires no interaction with the
processor core. This configuration allows the system to operate in maximum performance.

1.1.2 NVLink

NVLink is NVIDIA’s high-speed interconnect technology for GPU-accelerated computing.
Supported on SXM2-based Tesla P100 accelerator boards, NVLink significantly increases
performance for GPU-to-GPU communications and for GPU access to system memory.

Multiple GPUs are common in workstations, as are in the nodes of high-performance
computing clusters and deep-learning training systems. A powerful interconnect is extremely
valuable in multiprocessing systems. NVLink creates an interconnect for GPUs that offers
higher bandwidth than PCI Express Gen3 (PCIe) and are compatible with the GPU ISA to
support shared memory multiprocessing workloads.

Support for the GPU ISA allows programs that are running on NVLink-connected GPUs to run
directly on data in the memory of another GPU and on local memory. GPUs can also perform
atomic memory operations on remote GPU memory addresses, which enable much tighter
data sharing and improved application scaling.

NVLink uses NVIDIA’s new High-Speed Signaling interconnect (NVHS). NVHS transmits data
over a differential pair that is running at up to 20 Gbps. Eight of these differential connections
form a Sub-Link that sends data in one direction, and two sublinks (one for each direction)
form a Link that connects two processors (GPU-to-GPU or GPU-to-CPU).

A single Link supports up to 40 GBps of bidirectional bandwidth between the endpoints.
Multiple Links can be combined to form gangs for even higher-bandwidth connectivity
between processors. The NVLink implementation in Tesla P100 supports up to four Links,
which allows for a gang with an aggregate maximum theoretical bandwidth of 160 GBps
bidirectional bandwidth.
4 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Although NVLink primarily focuses on connecting multiple NVIDIA Tesla P100s, it can also
connect Tesla P100 GPUs with IBM Power CPUs with NVLink support. In this configuration,
each GPU has 80 GBps bidirectional bandwidth to the other connected GPU and 80 GBps
bidirectional bandwidth to the connected CPU.

1.2 HPC system hardware components

An HPC system includes multiple servers and can run parallel programs on these machines.
In this context, a parallel program is a piece of software that is specifically designed to run
simultaneously on multiple servers. For more information about the nature of parallel
programs, see 2.6, “Development models” on page 54.

An HPC system typically consists of the following server components1:

� Login nodes
� Management nodes
� Compute nodes
� Parallel file system

Server components of an HPC system are coupled with the following networks:

� Operating system (OS) level network
� Node and hardware management network
� High-performance interconnect

A simplified logical overview of an HPC system is shown in Figure 1-1.

Figure 1-1 HPC system overview

The following sections describe each of these components. For more information about
specific hardware offerings, see Chapter 7, “Hardware components” on page 319.

1 In the IBM Blue™ Gene solution, login nodes were known as frontend nodes, and management nodes were known
as service nodes.

Note: A storage area network (SAN) is not an intrinsic component of an HPC system.
Typically, the SAN is hidden at the level of the parallel file system.
Chapter 1. IBM Power System S822LC for HPC server overview 5

1.2.1 Login nodes

The login node is a point of entry for users of an HPC system. Login nodes are typically made
accessible from external networks (see Figure 1-1 on page 5). However, login nodes are
typically hidden behind a firewall for security reasons. Login nodes can be made available
only through virtual private network (VPN) connection. Other components of an HPC system
are typically made inaccessible from external networks.

The file system that contains user data is typically kept physically separated from the login
node hardware. This file system often is mounted to the login node as the /home directory.
This file system is also mounted on the compute nodes and accessed by way of the
high-speed InfiniBand network.

A user interacts with a login node according to the following typical scenario:

1. Copies data from some other system (local workstation, another remote system) to an
HPC system.

2. Logs in to the HPC system.

3. Works with the HPC system in an interactive mode:

– Edit source code files
– Build, debug, and profile applications
– Prepare input data for applications
– Submit computing jobs (see “Workload management software” on page 15)
– Post-process results of computations of previously completed jobs

4. Logs out of the HPC system.

5. Copies data from the HPC system to some other system (local workstation, another
remote system).

1.2.2 Management nodes

Often, application users and developers are not aware of the existence of management
nodes. These nodes are for use by system administrators only (see Figure 1-1 on page 5).
The following system software components are typically on management nodes:

� System management software (see “System management software” on page 12)
� Workload management software (see “Workload management software” on page 15)

Therefore, management nodes are mainly used for the following purposes:

� Hardware and Software management tasks
� Deployment and update of compute nodes
� Managing resources and scheduling jobs

Note: The login node is the only component of an HPC system that is directly accessible
by a user. Only system administrators have direct access to other components of an HPC
system.
6 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

1.2.3 Compute nodes

Compute nodes constitute most of the server components of an HPC system (see Figure 1-1
on page 5). The purpose of compute nodes is to run parallel compute-intensive user tasks.
Typically, all compute nodes of an HPC system have an identical hardware and software
configuration. This configuration is used to ensure that the execution of a computation with
some specific data takes the same amount of time regardless of a compute node on which it
is run.

Compute nodes often are not directly accessible by a user. The user puts the compute tasks
for execution through a job scheduler (see “Workload management software” on page 15).

Compute node of an HPC system include the following features:

� A processor is installed in each socket of a server or two servers.

� All memory slots of a server are populated with memory modules.

� The server has four GPUs (or a minimum of two).

� The server has a high-performance network adapter (see 1.2.5, “High-performance
interconnect” on page 8).

1.2.4 Compute racks

As shown in Figure 1-1 on page 5, each compute rack is a logical unit that is self-contained.
Each rack can hold up to 18 compute nodes. Each compute node is network-attached to the
Top of Rack Switch (TOR-S), which is in turn connected to the management rack TOR-S.
Each compute node also has a high-performance IB, which is connected to a rack InfiniBand
switch. This switch then has mutable connections to a core InfiniBand switch.

In this example, a compute rack is a logical unit. Each rack can physically contain 0 - 18
nodes. Administrators tend to reference a physical node as being in a rack instead of a node
number. Nodes are counted starting at the bottom of the physical rack and then counting up.
This method is used because a rack must be bottom heavy. Therefore, you start at the
bottom-most position and populate upwards when adding nodes to a rack.

A programmer can know a node only by its compute number by way of IBM Spectrum LSF®.
Thus, node c100f05n01 (which is in frame 5 bottom most position as n01 indicates) can also
be c100c062 to Spectrum LSF.

Therefore, each compute rack is self-contained, having networking connections back to the
management rack and core InfiniBand switch.

Note: If you must choose between a hardware configuration with higher memory
bandwidth and a server option with higher volume of memory, the choice often is made in
favor of higher memory bandwidth.
Chapter 1. IBM Power System S822LC for HPC server overview 7

1.2.5 High-performance interconnect

Technical computing workloads that involve interprocess communication are often
characterized by a large volume of data that is transferred between processes. A delay
between the request for data transfer and the actual data transfer affects the performance of
applications that frequently send and receive small chunks of data. This delay means that the
network interconnect between compute nodes of an HPC system must have the following
features:

� High bandwidth
� Low latency

Modern high-performance interconnects typically implement the Remote Direct Memory
Access (RDMA) feature. RDMA helps to minimize the processor overhead by allowing remote
processor to directly access system memory with no OS involvement.

In addition to connecting compute nodes with each other, the high-performance interconnect
provides access to the parallel file system (see Figure 1-1 on page 5 and 1.2.7, “Parallel file
system” on page 10). This configuration allows high throughput operations on files.

High-performance interconnect includes the following hardware components:

� Host channel adapters (HCA)
� Network switches and the corresponding cables

The high-performance interconnect network is also known as application network because
application processes that run on compute nodes use this network to communicate with each
other.

1.2.6 Management and operating system

The following networks are used for hardware control, operating system deployment, and
system management:

� Management network
� Operating system network

The hardware infrastructure for these networks includes the following components:

� Local area network (LAN) adapters built-in into servers
� Network switches
� Cables

Management network
The management network provides access to the service processors of the hardware (see
Figure 1-1 on page 5). The management node uses this network to control the network
attached devices in an out-of-band manner. For example, the IBM Power System S822LC
server can be controlled through a baseboard management controller (BMC). The service
network allows you to perform the following actions remotely:

� Updating the firmware
� Boot process troubleshooting by way of interacting with the system terminal
� Installation of operating system
8 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Operating system network
The operating system network is used by the management node to support all management
tasks that do not involve service processors of the hardware (see Figure 1-1 on page 5). This
network has network interface controllers (NICs) as endpoints of the management node, login
node, and compute nodes.

The management network allows management node (see 1.2.2, “Management nodes” on
page 6) to perform the following tasks:

� Deployment of compute nodes:

– Installing the operating system to the nodes
– Managing the operating system of the nodes
– Installing and configuring drivers and applications

� Managing resources and scheduling jobs

The following network services often are set up in the management network2:

� Domain name server (DNS)
� Hypertext Transfer Protocol (HTTP)
� Dynamic Host Configuration Protocol (DHCP)
� Trivial File Transfer Protocol (TFTP)
� Network file system (NFS)
� Network Time Protocol (NTP)

Networking technology considerations
The most common type of interconnect for management and service networks is the Gigabit
Ethernet (1 GigE). This choice is dictated by the type of network that is supported by
managed devices. For example, the typical network interface that is provided by a service
processor of a server is 1 GigE.

If you plan a large data transfer between an HPC system and external world, you can
consider a 10 Gigabit Ethernet (10 GigE) option for the site (public) network. However, 1 GigE
often is enough for the site (public) network.

Security considerations
The access to an HPC system often is guarded externally by the following security
technologies:

� Firewalls
� VPNs

Keep the login node (see 1.2.1, “Login nodes” on page 6) as a single point of entry to an HPC
system. In this scenario, all the networks (application, management, and service) are
configured only within an HPC system and are not visible from the outside. The management
node (see 1.2.2, “Management nodes” on page 6) becomes accessible only through a login
node.

One option to isolate networks is to use dedicated network switches and dedicated network
interfaces for each network. However, a server built-in network port is often shared between
the service processor network interface (BMC) and the OS. This configuration means that the
separation of networks can be achieved within one network switch by using virtual local area
network (VLAN) technology.

2 The services are network services that are needed by xCAT.
Chapter 1. IBM Power System S822LC for HPC server overview 9

1.2.7 Parallel file system

A shared file system that is accessible from the compute nodes and from a login node is an
essential component of an HPC system (see Figure 1-1 on page 5). It is challenging to
access the data that must be available for every node if no shared file system exists within an
HPC system. For more information about the implications, see “Distributed execution
environment” on page 14.

Technical computing workloads often require multiple processes of a distributed application to
operate simultaneously on the same file. The parallel file system middleware hides the
complexity of such operations and implements it in a performance efficient way.

When multiple processes access a file system at the same time, the file system performance
can become a bottleneck. Parallel file systems use distributed storage servers and a
high-performance interconnect. Therefore, parallel file systems help to minimize the
performance implications of parallel input and output operations.

A parallel file system is simultaneously mounted on multiple nodes and provides the following
features for an HPC system:

� Shared file system with common space of file names
� Simultaneous access to a file from different processes
� High bandwidth of input and output operations

Most portions of the following software components can be in a parallel file system:

� Distributed execution environment (see “Distributed execution environment” on page 14)

� Application development software (see 1.3.2, “Application development software” on
page 16)

� Application software (see 1.3.3, “Application software” on page 18)
10 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

1.3 HPC system software components

An HPC system solution features the following main groups of software components:

� System software
� Application development software
� Application software

Figure 1-2 shows a simple extension of Figure 1-1 on page 5 with the mapping of software
components to hardware.

Figure 1-2 Software components of an HPC system that is mapped to the hardware

The following sections describe each of these components. For more information about
specific software offerings, see Chapter 8, “Software stack” on page 351.
Chapter 1. IBM Power System S822LC for HPC server overview 11

1.3.1 System software

The system software lies at the lowest level of software stack. It consists of the components
that are responsible for the following tasks:

� System deployment
� Basic system functionality
� Operation of the high-performance computing pieces of hardware
� Access to parallel file system
� Running environment that supports distributed programs
� Workload management
� System monitoring

System management software
The system management software (see “Management node” in Figure 1-2 on page 11) is a
cornerstone of the system software stack. It helps to automate the process of deployment and
maintenance of an HPC system. Often, this software is the first piece of software that is
deployed when an HPC system is installed. All the other software components are installed at
a later stage.

The following tasks often are performed by using the system management software3:

� Discovery of the hardware servers

� Remote system management against the discovered server:

– Remote power control
– Remote console support
– Remote inventory information query

� Provisioning operating system on physical (bare-metal) or virtual machines

� Installation and configuration of software:

– During operating system installation
– After the operating system installation

� System management in a parallel manner:

– Parallel shell (that is, running shell command against nodes in parallel)
– Parallel copy

These tasks mean that the system management software is crucial for the automation of the
following routine tasks:

� Provisioning and deployment of multiple identical compute servers

� Maintenance of multiple identical system images:

– Applying operating system updates
– System-wide software settings change

� Replacement of a failing node with a new node

Note: The choice of system management software is an important architectural decision
because it can be quite time consuming to switch to another software after selecting and
implementing the software.

3 This list of tasks partially originates from the list of xCAT features, but does not cover all of them.
12 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

System management software includes the following examples:

� xCAT (Extreme Cloud/Cluster Administration Toolkit

For more information about shows how to use xCAT as a tool for an HPC system
deployment, see Chapter 5, “Node and software deployment” on page 193.

� IBM Platform Cluster Manager

For more information about the IBM Spectrum Computing products family, see the IBM
Spectrum Computing website.

Operating system
The operating system of choice in an HPC cluster is typically Linux. Also, typically all servers
of an HPC system run the same Linux version. In rare cases, some components of an HPC
system are required to run a specific version of Linux.

The HPC solution that is described in this book is based on Red Hat Enterprise Linux (RHEL)
Server operating system. For information about how to install RHEL with xCAT, see 5.4.1,
“RHEL server” on page 209.

Device drivers
Most of the hardware components of a server commonly include built-in support in an OS and
do not require special handling. However, the device drivers that operate the
high-performance computing pieces of hardware are not typically included with the OS and
must be installed separately.

A modern HPC solution often needs drivers for the following devices:

� Hardware accelerator, such as a GPU

For example, drivers for the NVIDIA Tesla GPU of the IBM Power System S822LC server
are installed as part of NVIDIA CUDA Toolkit (see 5.6.3, “CUDA Toolkit” on page 247).

� High-performance interconnect host channel adapter that supports RDMA technology

For more information about how to install the Mellanox Open Fabrics Enterprise
Distribution (OFED) package that enables the Mellanox InfiniBand adapter, see 5.6.4,
“Mellanox OFED” on page 249.

Parallel file system
Unlike compute accelerators and network adapters, a parallel file system is not a piece of
hardware that is directly installed in a machine. A parallel file system can be thought of as a
software service that is external to the machine (see Figure 1-2 on page 11). Typically, the
interaction between machines and a parallel file system is organized in the following
client/server manner:

� A parallel file system exports its services by running server software components.
� The machines that need access to a parallel file system run a client software component.

Therefore, parallel file system client software must be installed and configured on all
machines that use a parallel file system. A parallel file system client software helps an OS to
make a parallel file system available for a user by mounting it to a directory tree. As a result,
the interaction with the parallel file system from the user perspective does not differ from the
interaction with any other file system that is mounted to a machine.
Chapter 1. IBM Power System S822LC for HPC server overview 13

http://xcat.org
http://www.ibm.com/systems/spectrum-computing/
http://www.ibm.com/systems/spectrum-computing/
http://xcat.org
http://www.ibm.com/support/knowledgecenter/SSDV85/product_welcome_pcm.html
http://www.ibm.com/support/knowledgecenter/SSDV85/product_welcome_pcm.html

This book shows how to couple an HPC system with a parallel file system: IBM Spectrum
Scale™. IBM Spectrum Scale is a proven, scalable, high-performance data and file
management solution. IBM Spectrum Scale is based on the IBM General Parallel File System
(GPFS) technology. For more information about the deployment, see 5.6.13, “Spectrum Scale
(formerly GPFS)” on page 261.

Distributed execution environment
The need for a distributed execution environment emerges when an application developer
wants to use multiple compute nodes within a single application. HPC systems are used for
this purpose (running parallel programs). Therefore, multiple frameworks are available that
facilitate the development and running of this sort of computer codes.

The following sections describe the view of a distributed execution environment from a
perspective of application development. For more information, see “Message passing
interface (MPI)” on page 17. This section described how the distributed execution
environment removes the burden of distributed application loading and running from
application users and application developers.

Typically, a distributed execution environment (see Figure 1-2 on page 11) facilitates the
following routine tasks that are related to running parallel applications:

� Runs an executable file on specific multiple compute nodes simultaneously.

� Monitors the runtime status of a parallel program.

� Stops a parallel program and cleans up compute nodes.

� Exports the OS environment variables to compute nodes before running a program.

� Manages standard input, output, and error streams (stdin, stdout, and stderr).

� Controls the binding and affinity of parallel processes and threads to logical processors.

� Selects a type of interconnect to use and tunes its parameters.

� Provides distributed debugging tools.

� Interacts with workload management software (see “Workload management software” on
page 15).

Additionally, if a shared file system is not available in an HPC system, some distributed
execution environments provide help with the following routine file operations:

� Copy a specified executable file to compute nodes before starting remote processes and
delete it upon completing a job.

� Preinstall files to compute nodes where processes are run just before starting those
processes.

Distributed execution environments include the following examples:

� IBM Parallel Environment Runtime Edition (for more information, see 3.3, “Using IBM
Parallel Environment v2.3” on page 104)

� OpenMPI project
14 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Workload management software
Usually, an HPC system is shared by many users and multiple computing tasks that are
running at the same time. A workload management software automates the task of handling
system resources and user jobs in such circumstances.

The following case provides an insight into a typical scenario where a workload management
software becomes useful:

� An HPC system has a limited number of compute nodes.
� The application user must run parallel applications that require several compute nodes.
� A user has several computing jobs that must be run.
� Many users work with an HPC system at the same time.

Workload management software (see Figure 1-2 on page 11) uses the following two logical
components to cope with this scenario:

� Resource manager monitors and controls compute nodes. A resource manager is aware of
compute nodes that are idle or busy with user applications.

� Job scheduler maintains a queue of tasks from application users. Job scheduler uses
information from resource manager to schedule the tasks for execution.

The interaction between application user, workload management software, and its
components is based on the following scenario:

1. User submits a task to a job of the scheduler. The minimal specification of a task typically
includes the following information:

– Application name (path to an executable file)
– Number of compute nodes to be used
– Maximum time that is expected to be taken by a program to run

2. Job scheduler places the task into a job queue.

3. Workload management software schedules computing resources for the task and
arranges a time slot for the execution.

4. At some moment in time, the workload management software sends the task for running.

5. When the task completes, it is removed from the job queue, and the user can collect the
results.

The job scheduler uses multiple criteria to arrange jobs. Modern workload management
software provides flexible options for tuning the configuration of a job queue and a scheduler
to adhere to local site policies.

Application users can also complete the following tasks by using the workload management
software:

� Request the status of a job queue.
� Inquire about the status of a particular job from a job queue.
� Change the specification of a task that is submitted to a job queue.
� Cancel a task that is submitted to a job queue.

At the core, the workload management software provides the following basic advantages for
application users, system administrators, and HPC systems owners:

� Automation of task management
� Better system utilization
Chapter 1. IBM Power System S822LC for HPC server overview 15

This book focuses on the IBM Spectrum LSF workload management software. For more
information, see the IBM Spectrum LSF website.

For more information about the IBM Spectrum LSF deployment, see 5.6.14, “IBM Spectrum
LSF” on page 266.

1.3.2 Application development software

As its name implies, application development software (see Figure 1-2 on page 11) is used to
develop software. However, application development software is needed by the following
categories of users:

� Application developers
� Application users
� System administrators

If application software or system software is distributed in source code package form,
application users and system administrators use application development tools to create
ready-to-use binary packages. However, the main target audience of application development
software is application developers.

This chapter provides a brief overview of only the application development software stack.

Compilers
A compiler is a tool that converts source code into a binary executable file. The most popular
languages in the area of HPC are C, C++, and Fortran. Most major distributions of Linux
provide compilers from these languages. System vendors provide state-of-the-art compilers
that can make full use of the underlying hardware. The following C, C++, and Fortran
compilers are relevant for HPC systems that are based on IBM POWER® processors:

� GNU Compiler Collection (GCC)
� IBM Advance Toolchain for Linux on Power
� IBM XL compiler products
� NVIDIA compiler for GPU

For more information about these compilers, see 8.7, “IBM XL compilers, GCC, and Advance
Toolchain” on page 355.

For more information about show how to deploy compilers, see the following sections:

� 5.6.5, “XL C/C++ runtime libraries” on page 251
� 5.6.6, “XL Fortran runtime libraries” on page 253
� 5.6.7, “Advance Toolchain runtime libraries” on page 254.

For more information about how to use these compilers for application development, see
Chapter 2, “Compilation, execution, and application development” on page 23.

Parallel computing application interfaces
To use an HPC system, an application must run in parallel mode. It is the responsibility of an
application developer to write the program in such a way as to make it possible to use the
HPC system. If a program is not designed to run in an HPC system, the program cannot be
easily parallelized.

You can make a program run in parallel by using three different methods, although these
methods can be intermixed with each other. For more information, see 2.6, “Development
models” on page 54.
16 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.ibm.com/systems/spectrum-computing/products/lsf/

OpenMP
OpenMP is the simplest way to enable parallelism in an application. The OpenMP standard
defines a set of directives to be embedded into the source code. However, substantial effort is
still needed to identify parallelism in an application domain, and design algorithms and data
structures to fit the OpenMP parallel programming model.

OpenMP can be used to use the parallel capabilities of a single server. Parallel threads that
are created by OpenMP require shared address space. A pool of OpenMP threads that is
created by a process cannot span multiple compute nodes.

GCC and IBM compilers enable support of OpenMP through a compiler option.

NVIDIA CUDA
CUDA is a parallel computing platform and programming model by NVIDIA. CUDA is a way to
use GPUs by NVIDIA. GPUs are especially efficient in solving data parallel problems. CUDA
programs run within a single machine. A compiler that is a part of the CUDA Toolkit is needed
to produce binary files that use GPUs.

Message passing interface (MPI)
MPI is the most widespread parallel programming interface to develop applications that span
execution across multiple compute nodes.

Application that is written with MPI runs multiple threads on different compute nodes.
Processes of an application coordinate their execution by sending messages to each other or
by using remote memory access techniques.

For more information about shows how to develop MPI programs with IBM Parallel
Environment Runtime Edition, see 2.6.5, “MPI programs with IBM Parallel Environment v2.3”
on page 70.

Mathematical libraries
Software libraries of mathematical routines are essential part of an HPC system. A
mathematical library is a software package that implements some numerical algorithms.
Application developers access the algorithms through a programming interface that is made
available by a library. Hardware vendors often supply libraries that are optimized for a
particular architecture. Many libraries also implement parallel algorithms.

By using mathematical libraries, an application developer receives the following benefits:

� Saves time on implementing standard mathematical routines
� Uses optimized implementation that is supplied by a hardware vendor
� Uses parallelism that is hidden inside a library

This book focuses on the IBM Engineering and Scientific Subroutine Library (ESSL) offering.
For more information, see the following sections:

� For an overview, see 8.9, “IBM Engineering and Scientific Subroutine Library and IBM
Parallel ESSL” on page 357.

Note: In contrast to problems that can be solved with widely accepted map-reduce type
programming model, HPC problems often are highly sensitive to the latency of individual
operations. Ideally, processes of an HPC application must run in sync with each other and
communicate with minimal latency and maximum bandwidth. MPI facilitates the
development in this programming model and uses the underlying high-performance
interconnect.
Chapter 1. IBM Power System S822LC for HPC server overview 17

� For more information about deployment, see 5.6.11, “ESSL” on page 259 and 5.6.12,
“PESSL” on page 260.

� For more information about usage, see 2.3, “IBM Engineering and Scientific Subroutine
Library” on page 34 and 2.4, “Parallel ESSL” on page 40.

Integrated development environments
Integrated development environment (IDE) provides a convenient GUI for application
developers. IDE often features the following tools:

� Code editor with syntax highlighting and code completion
� Building tools
� Remote application launcher
� Debugger
� Code analyzer
� Profiler

For more information about IDE options, see 4.6, “Application development and tuning tools”
on page 159.

Debuggers
A code debugger is an application development tool that facilitates the process of eliminating
programming errors from a source code. Parallel applications provide more challenges for
debugging compared to serial applications.

For more information about the tools that are available for debugging MPI and CUDA
programs, see 4.6, “Application development and tuning tools” on page 159.

Performance analysis tools
Profilers (or performance analysis tools) automate the process of finding hotspots in a code.
These tools help to evaluate the following metrics:

� Stalls of processor core units
� Effective memory bandwidth
� Cache hits and misses
� Graphical processing unit performance
� Network performance

For more information about performance analysis tools, see 4.6, “Application development
and tuning tools” on page 159. For more information about performance optimization with the
help of performance analysis tools, see the following publications:

� Performance Optimization and Tuning Techniques for IBM Power Systems Processors
Including IBM POWER8, SG24-8171

� Implementing an IBM High-Performance Computing Solution on IBM POWER8,
SG24-8263

1.3.3 Application software

Running application software is essentially the ultimate purpose of an HPC system’s
existence. Application software (see Figure 1-2 on page 11) is a tool that users employ to
solve problems from application domains.

However, this book targets system administrators and application developers. Therefore, it
does not cover application software extensively. For more information about examples of
application software, see Appendix A, “ISV Applications” on page 361.
18 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

1.4 HPC system solution

This chapter presented a generic overview of the hardware and the software components of
an HPC system. This section revisits the schemes that are shown in Figure 1-1 on page 5
and Figure 1-2 on page 11 and provides the specific names of the IBM products.

For more information about HPC system solution implementation, see Chapter 5, “Node and
software deployment” on page 193.

1.4.1 Compute nodes

Use the IBM Power System S822LC (model 8335-GTB) server offering for high-performance
computing as compute nodes. Consider the option to augment the server with the following
devices:

� Two NVIDIA Tesla P100 GPUs (see 7.2, “NVIDIA Tesla P100” on page 324)
� One 100Gb EDR InfiniBand Adapter (see 7.14, “Mellanox InfiniBand” on page 349)

Processor options and system memory
This IBM Power System S822LC model has two sockets, and all memory slots are populated
with memory modules. When choosing the processor option and the amount of system
memory, consider the anticipated workloads.

Disk features
A compute node does not need large and fast disks because it stores only the OS, drivers,
and minor pieces of system software (see Figure 1-2 on page 11). However, if you plan to
extensively use local disk space during computations, consider the option of larger and faster
disks.

1.4.2 Management node

A management node does not need GPUs and high memory bandwidth because it does not
use many processor cycles. Therefore, even an entry-level server option has enough
resources to satisfy the needs of a management node. Consider the IBM Power System
S812LC or the IBM Power System S812L offerings as a possible management node.

1.4.3 Login node

A login node is not used as a computing resource. Therefore, the most basic solution can be
built that is based on the IBM Power System S812LC or the IBM Power System S812L
offerings. However, if the GPU is required in a login node, consider the use of an IBM Power
System S822LC or an IBM Power System S824L for this node.

1.4.4 Combining the management and the login node

Consider the following scenario:

� No large workload is expected on the management and login nodes.
� The login node does not need GPU.

In this case, consider the use of only one physical machine (IBM Power System S812LC or
IBM Power System S812L). In such a scenario, the management and login node can coexist
as PowerKVM guests.
Chapter 1. IBM Power System S822LC for HPC server overview 19

1.4.5 Parallel file system

To implement the parallel file system, consider one of the following options:

� IBM Elastic Storage Server
� IBM Spectrum Scale (built on the former IBM GPFS)

1.4.6 High-performance interconnect switch

The implementation of the high-performance interconnect is built around an InfiniBand switch.
You can consider an offering from Mellanox. For more information about a suitable product,
see the hardware compatibility matrix that is available at the IBM HPC Clustering with the
InfiniBand Switch and IBM POWER8 S822LC Compute Nodes - Service Pack 1.2 page
of the IBM developerWorks website.
20 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.ibm.com/systems/storage/spectrum/ess/index.html
http://www.ibm.com/systems/storage/spectrum/ess/index.html
http://www.ibm.com/systems/storage/spectrum/ess/index.html
http://www.ibm.com/systems/storage/spectrum/ess/index.html
http://www.ibm.com/systems/storage/spectrum/scale/
https://ibm.co/2p4dvUR
https://ibm.co/2p4dvUR

Part 1 Developers guide

This part incldue three chapters that provide developers with guidance about how to create,
compile, run, measure, and enhance the performance of applications to use the capabilities
of the latest IBM high performance computing solution.

This part contains the following chapters:

� Chapter 2, “Compilation, execution, and application development” on page 23

� Chapter 3, “Running parallel software, performance enhancement, and scalability testing”
on page 89

� Chapter 4, “Measuring and tuning applications” on page 121

Part 1
© Copyright IBM Corp. 2017. All rights reserved. 21

22 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Chapter 2. Compilation, execution, and
application development

This chapter provides information about software, compilers, and tools that can be used for
application development and tuning on the IBM Power System S822LC. A few development
models also are described.

This chapter includes the following topics:

� 2.1, “Compiler options” on page 24
� 2.2, “Porting applications to IBM Power Systems” on page 29
� 2.3, “IBM Engineering and Scientific Subroutine Library” on page 34
� 2.4, “Parallel ESSL” on page 40
� 2.5, “Using POWER8 vectorization” on page 49
� 2.6, “Development models” on page 54

2

© Copyright IBM Corp. 2017. All rights reserved. 23

2.1 Compiler options

Compiler options are one of the main tools that are used to debug and optimize the
performance of your code during development. Several compilers, including IBM XL, GNU
Compiler Collection (GCC), PGI, and NVIDIA compilers support the latest IBM POWER8
processor features and enhancements.

2.1.1 IBM XL compiler options

XL C/C++ for Linux v13.1.5 and XL Fortran for Linux v15.1.5 support POWER8 processors
with new features and enhancements, such as little endian distributions support, compiler
optimizations, and built-in functions for POWER8 processors. In addition, many OpenMP 4.5
features were introduced1, such as the constructs that enable the loading and offloading of
applications and data to NVIDIA GPU technology.

By default, these compilers generate code that runs on various IBM Power Systems. Options
can be added to exclude older processor chips that are not supported by the target
application. The following major XL compiler options control this support:

� -mcpu

Specifies the family of the processor architecture for which the instruction code is
generated.

� -mtune

Indicates the processor chip generation of most interest for performance. It tunes
instruction selection, scheduling, and other architecture-dependent performance
enhancements to run optimally on a specific hardware architecture.

� -qcache

Defines a specific cache or memory geometry.

The -mcpu=pwr8 suboption produces object code that contains instructions that run on the
POWER8 hardware platforms. With the -mtune=pwr8 suboption, optimizations are tuned for
the POWER8 hardware platforms. This configuration can enable better code generation
because the compiler uses capabilities that were not available on those older systems.

For all production codes, it is imperative to enable a minimum level of compiler optimization by
adding the -O option for the XL compilers. Without optimization, the focus of the compiler is on
faster compilation and debug ability, and it generates code that performs poorly at run time.

For projects with increased focus on runtime performance, use the more advanced compiler
optimization. For numerical or compute-intensive codes, the XL compiler options -O3 or -qhot
-O3 enable loop transformations, which improve program performance by restructuring loops
to make their execution more efficient by the target system. These options perform
aggressive transformations that can sometimes cause minor differences in the precision of
floating point computations. If the minor differences are a concern, the original program
semantics can be fully recovered with the -qstrict option.

For more information about XL C/C++ support for POWER8 processor, see the IBM XL
C/C++ for Linux, V13.1.5 (little endian distributions) documentation page at the IBM
Knowledge Center website.

1 OpenMP (Open Multi-Processing) is an application programming interface that facilitates the development of
parallel applications for shared memory systems.
24 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

https://www.ibm.com/support/knowledgecenter/en/SSXVZZ_13.1.5/com.ibm.compilers.linux.doc/welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSXVZZ_13.1.5/com.ibm.compilers.linux.doc/welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSXVZZ_13.1.5/com.ibm.compilers.linux.doc/welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSXVZZ_13.1.5/com.ibm.compilers.linux.doc/welcome.html

For more information about XL Fortran, see the IBM XL Fortran for Linux, V15.1.5 (little
endian distributions) documentation page at the IBM Knowledge Center website.

Optimization parameters
The strength of the XL compilers is in their optimization and ability to improve code
generation. Optimized code runs with greater speed, uses less machine resources, and
increases your productivity.

For XL C/C++ v13.1.5, the available compiler options to maximize application development
performance are listed in Table 2-1.

Table 2-1 Optimizations levels and options

Several options are used to control the optimization and tuning process, so users can improve
the performance of their application at run time.

When you compile programs with any of the following sets of options, the compiler
automatically attempts to vectorize calls to system math functions. It does so by calling the
equivalent vector functions in the Mathematical Acceleration Subsystem (MASS) libraries,
with the exceptions of functions vdnint, vdint, vcosisin, vscosisin, vqdrt, vsqdrt, vrqdrt,
vsrqdrt, vpopcnt4, and vpopcnt8:

� -qhot -qignerrno -qnostrict
� -O3 -qhot
� -O4
� -O5

If the compiler cannot vectorize, it automatically tries to call the equivalent MASS scalar
functions. For automatic vectorization or scalarization, the compiler uses versions of the
MASS functions that are contained in the system library libxlopt.a.

In addition to any of the sets of options, if the compiler cannot vectorize when the -qipa option
is in effect, it tries to inline the MASS scalar functions before it decides to call them.

Based optimization
level

Other options that
are implied by level

Other suggested
options

Other options with
possible benefits

-O0 None -mcpu None

-O2 -qmaxmem=8192 -mcpu
-mtune

-qmaxmem=-1
-qhot=level=0

-O3 -qnostrict
-qmaxmem=-1
-qhot=level=0

-mcpu
-mtune

-qpdf

-O4 -qnostrict
-qmaxmem=-1
-qhot
-qipa
-qarch=auto
-qtune=auto
-qcache=auto

-mcpu
-mtune
-qcache

-qpdf
-qsmp=auto

-O5 All of -O4
-qipa=level=2

-mcpu
-mtune
-qcache

-qpdf
-qsmp=auto
Chapter 2. Compilation, execution, and application development 25

https://www.ibm.com/support/knowledgecenter/en/SSAT4T_15.1.5/com.ibm.compilers.linux.doc/welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSAT4T_15.1.5/com.ibm.compilers.linux.doc/welcome.html

Not all options benefit all applications. Tradeoffs sometimes occur between an increase in
compile time, a reduction in debugging capability, and the improvements that optimization can
provide. For more information about the optimization and tuning process and writing
optimization-friendly source code, see the options that are listed in Table 2-2 and
Optimization and Programming Guide - XL C/C++ for Linux, V13.1.5, for little endian
distributions, SC27-6560.

Table 2-2 Optimization and tuning options

Option name Description

-qhot Performs aggressive, high-order loop analysis and transformations
during optimization (implies -O2 optimization). Look for the
suboptions available for -qhot to enable even more loop
transformation, cache reuse, and loop parallelization when used
with -qsmp.

-qipa Enables or customizes a class of optimizations that are known as
interprocedural analysis (IPA). These optimizations enable a
whole-program analysis at one time rather than a file-by-file basis.
The XL compiler receives the power to restructure your application
and perform optimizations, such as inlining for all functions and
disambiguation of pointer references and calls. Look over -qipa
suboptions for more features.

-qmaxmem Limits the amount of memory that the compiler allocates while it
performs specific, memory-intensive optimizations to the specified
number of KBs.

-qignerrno Allows the compiler to perform optimizations as though system
calls will not modify errno.

-qpdf1, -qpdf2 Tunes optimizations through profile-directed feedback (PDF),
where results from sample program execution that was compiled
with -qpdf1 are used to improve optimization near conditional
branches and in frequently run code sections afterward with
-qpdf2, which creates a profiled optimized executable file.

-p, -pg, -qprofile The compiler prepares the object code for profiling by attaching
monitoring code to the executable file. This code counts the
number of times each routine is called and creates a gmon.out file
if the executable file can run successfully. Afterward, a tool, such
as gprof, can be used to generate a runtime profile of the program.

-qinline Attempts to inline functions instead of generating calls to those
functions for improved performance.

-qstrict Ensures that optimizations that are performed by default at the -O3
and higher optimization levels, and, optionally at -O2, and do not
alter the semantics of a program.

-qsimd Controls whether the compiler can automatically use vector
instructions for processors that support them.

-qsmp Enables parallelization of program code automatically by the
compiler. Options, such as schedulers and chunk sizes, can be
enabled to the code by this option.
26 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

For more information about the XL C/C++ compiler options and for XL Fortran, see the
following IBM Knowledge Center pages:

� Organization and tuning page for version 13.1.5
� Organization and tuning page for version 15.1.5

2.1.2 GCC compiler options

For GCC, a minimum level of compiler optimization is -O2, and the suggested level of
optimization is -O3. The GCC default is a strict mode, but the -ffast-math option disables
strict mode. The -O fast option combines -O3 with -ffast-math in a single option. Other
important options include -fpeel-loops, -funroll-loops, -ftree-vectorize,
-fvect-cost-model, and -mcmodel=medium.

Support for the POWER8 processor is now available on GCC-4.8.5 through the -mcpu=power8
and -mtune=power8 options. The -mcpu options automatically enable or disable the following
options:

� -maltivec -mfprnd -mhard-float -mmfcrf -mmultiple
� -mpopcntb -mpopcntd -mpowerpc64
� -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float
� -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx
� -mcrypto -mdirect-move -mpower8-fusion -mpower8-vector
� -mquad-memory -mquad-memory-atomic

The ABI type to use for intrinsic vectorizing can be set by specifying the -mveclibabi=mass
option and linking to the MASS libraries, which enables more loops with -ftree-vectorize.
The MASS libraries support only static archives for linking. Therefore, the following explicit
naming and library search order is required for each platform or mode:

� POWER8 32-bit: -L<MASS-dir>/lib -lmassvp8 -lmass_simdp8 -lmass -lm
� POWER8 64-bit: -L<MASS-dir>/lib64 -lmassvp8_64 -lmass_simdp8_64 -lmass_64 -lm

For more information about GCC support on POWER8, see the GNU Manual website.

-qoffload Enables support for offloading OpenMP target regions to a NVIDIA
GPU. Use the OpenMP #pragma omp target directive to define a
target region. Moreover, to -qoffload to take effect, you must
specify the -qsmp option during compilation.

-qunroll Controls loop unrolling for improved performance.

Option name Description
Chapter 2. Compilation, execution, and application development 27

http://ibm.co/2nw5N3N
http://ibm.co/2nQqXL7
https://gcc.gnu.org/onlinedocs/gcc-4.8.5/gcc/
https://www.ibm.com/support/knowledgecenter/en/SSAT4T_15.1.5/com.ibm.xlf1515.lelinux.doc/compiler_ref/fcat_optzn.html

Optimization parameters
The most commonly used optimization options are listed in Table 2-3.

Table 2-3 Optimization options for GCC

Option name Description

-O, -O1 With the -O option, the compiler tries to reduce code size and execution time
without performing any optimizations that significant compilation time.

-O2 The -O2 option turns on all optional optimizations except for loop unrolling,
function inlining, and register renaming. It also turns on the -fforce-mem
option on all machines and frame pointer elimination on machines where
frame pointer elimination does not interfere with debugging.

-O3 The -O3 option turns on all optimizations that are specified by -O2 and turns
on the -finline-functions, -frename-registers, -funswitch-loops,
-fpredictive-commoning, -fgcse-after-reload, -ftree-vectorize,
-fvect-cost-model, -ftree-partial-pre, and -fipa-cp-clone options.

-O0 Reduces compilation time and grants debuggers full access to the code. Do
not optimize.

-Os Optimize for size. The -Os option enables all -O2 optimizations that do not
typically increase code size. It also performs further optimizations that are
designed to reduce code size.

-ffast-math Sets -fno-math-errno, -funsafe-math-optimizations, and
-fno-trapping-math, -ffinite-math-only, -fno-rounding-math,
-fno-signaling-nans, and -fcx-limited-range.

This option causes the preprocessor macro __FAST_MATH__ to be defined.

This option must never be turned on by any -O besides -Ofast option because
it can result in incorrect output for programs that depend on an exact
implementation of IEEE or ISO rules or specifications for math functions.

-funroll-loops Unroll loops whose number of iterations can be determined at compile time
or upon entry to the loop. The -funroll-loops option implies both the
-fstrength-reduce, -frerun-cse-after-loop, -fweb, and
-frename-registers options.

-fno-inline Do not expand any functions inline apart from those functions that are marked
with the always_inline attribute. This setting is the default setting when not
optimizing.

Single functions can be exempted from inlining by marking them with the
noinline attribute.

-fno-math-errno Do not set ERRNO after math functions are called that are run with a single
instruction; for example, sqrt. A program that relies on IEEE exceptions for
math error handling can use this flag for speed while maintaining IEEE
arithmetic compatibility.

-finline-functions Consider all functions for inlining, even if they are not declared inline. The
compiler heuristically decides which functions are worth integrating in this
way.

If all calls to a specific function are integrated and the function is declared
static, the function is normally not output as assembler code in its own right.
Enabled at level -O3.
28 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

2.2 Porting applications to IBM Power Systems

The first challenge that often is encountered when working on Power Systems is the fact that
software that is written in C, C++, or Fortran includes some significant differences from
applications that were developed for x86 and x86_64 systems. Therefore, considering that
many applications exist on these architectures, the work of writing and porting applications
are assumed to involve a large amount of time, effort, and investment. If done manually, this
task can be burdensome.

For example, consider the snippet that is shown in Example 2-1.

Example 2-1 x86 code that does not work properly on Power Systems

1. #include <stdio.h>
2.
3. int main()
4. {
5. char c;
6.
7. for(c=0 ; c>=0 ; c++)
8. printf("%d: %c\n", (int) c, c);
9.
10. return 0;
11.}

The code that is shown in Example 2-1 runs 256 times and displays the expected characters
on a x86_64 system, but turns into an infinite loop in a ppc64le system. Considering that
characters on ppc are mapped by default to unsigned character at the same time x86
characters are mapped to a signed character, the port as shown in Example 2-2 is necessary
to fix the infinite loop challenge.

Example 2-2 The ppc port of Example 2-1

--- char_x86.c2016-11-15 11:38:13.153959471 -0500
+++ char_ppc.c2016-11-15 11:38:21.833959907 -0500
@@ -2,7 +2,7 @@

 int main()
 {
- char c;
+ signed char c;

 for(c=0 ; c>=0 ; c++)
 printf("%d: %c\n",(int)c,c);
Chapter 2. Compilation, execution, and application development 29

If you are coming from a 32-bit environment, several problems can occur, mostly because of
long pointer data types sizes and the alignment of your variables as listed in Table 2-4.

Table 2-4 Data types

Moreover, architecture that is built in functions can also be a problem. Consider an example of
SIMD vectors for the following code that is designed for an x86 system, as shown in
Example 2-3.

Example 2-3 Code with x86 built in functions that need porting

1. #include <stdlib.h>
2. #include <stdio.h>
3.
4. typedef float v4sf __attribute__ ((mode(V4SF)));
5.
6. int main()
7. {
8. int i;
9. v4sf v1, v2, v3;
10.
11. //Vector 1
12. v1[0] = 20;
13. v1[1] = 2;
14. v1[2] = 9;
15. v1[3] = 100;
16.
17. //Vector 2
18. v2[0] = 2;
19. v2[1] = 10;
20. v2[2] = 3;
21. v2[3] = 2;
22.
23. // Sum 2 Vectors
24. v3 = __builtin_ia32_addps(v1, v2);
25.
26. printf("SIMD addition\nResult\nv3 = < ");
27. for (i = 0; i < 4; i++)
28. printf("%.1f ", v3[i]);
29. printf(">\n");
30.

Data type 32-bit mode 64-bit mode

Size Alignment Size Alignment

long, signed long,
unsigned long

4 bytes 4-byte
boundaries

8 bytes 8-byte
boundaries

pointer 4 bytes 4-byte
boundaries

8 bytes 8-byte
boundaries

size_t (defined in
the header file
<cstddef>)

4 bytes 4-byte
boundaries

8 bytes 8-byte
boundaries

ptrdiff_t (defined
in the header file
<cstddef>)

4 bytes 4-byte
boundaries

8 bytes 8-byte
boundaries
30 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

31. // Compare element by element from both vectors and get the higher value
from each position

32. v3 = __builtin_ia32_maxps(v1, v2);
33.
34. printf("SIMD maxps\nResult\nv3 = < ");
35. for (i = 0; i < 4; i++)
36. printf("%.1f ", v3[i]);
37. printf(">\n");
38.
39. return 0;
40.}

This code uses x86 built-in functions, such as __builtin_ia32_addps and
__builtin_ia32_maxps. It is possible to look over both documentations to find the
corresponding functions; that is, if they exist between these architectures. However, this
strategy can be burdensome.

To mitigate all of these challenges, IBM created an all-in-one solution for developing and
porting applications on power servers that are denominated IBM Software Development Kit
for Linux on Power, see the IBM Software Development Kit for Linux on Power (SDK) website.

Among other features, this SDK aims to aid developers to code, fix, simulate, port, and run
software locally in a x86_64 machine, virtually in a x86_64 simulation, or remotely in a power
server. Currently, this SDK integrates the Eclipse integrated development environment (IDE)
with IBM XL C/C++, Advance Toolchain and open source tools, such as OProfile, Valgrind,
and Autotools. Figure 2-1 shows the detection of such of function in the code that is shown in
Example 2-3 on page 30.

Figure 2-1 Porting problems on Example 2-3 on page 30 detected by ibm-sdk-lop

In addition, this tool integrates the Feedback Directed Program Restructuring (IBM FDPR®)
and pthread monitoring tool, which are designed to analyze and use Power Systems servers,
including powerful porting and analytic tools, such as Migration Advisor (MA), Source Code
Advisor, and CPI Breakdown.
Chapter 2. Compilation, execution, and application development 31

https://developer.ibm.com/linuxonpower/sdk-download/

By starting the Migration Advisor Wizard on the code that is shown in Example 2-3 on
page 30, two options are available, as shown in Figure 2-2.

Figure 2-2 Migration Wizard enables porting code from different architectures and endianness
32 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

The code that is shown in Example 2-3 on page 30 leads to the port report as shown in
Figure 2-3.

Figure 2-3 Porting log showing changes that were performed on Example 2-3 on page 30

Consider the changes that the advisor performed as shown in Example 2-4.

Example 2-4 Porting changes that performed by the Migration Wizard on Example 2-3 on page 30

--- vector_before_migration 2016-12-01 17:04:47.332015615 -0500
+++ vector_after_migration 2016-12-01 17:04:11.783017631 -0500
@@ -3,6 +3,12 @@

 typedef float v4sf __attribute__ ((mode(V4SF)));

+#ifdef __PPC__
+__vector float vec__builtin_ia32_maxps(__vector float a, __vector float b) {
+ //TODO: You need to provide a PPC implementation.
+}
+#endif
+
 int main()
 {
 int i;
@@ -21,7 +27,11 @@ int main()
 v2[3] = 2;

 // Sum 2 Vectors
- v3 = __builtin_ia32_addps(v1, v2);
+ #ifdef __PPC__
+ v3 = vec_add(v1, v2);
Chapter 2. Compilation, execution, and application development 33

+ #else
+ v3 = __builtin_ia32_addps(v1, v2);
+ #endif

 printf("SIMD addition\nResult\nv3 = < ");
 for (i = 0; i < 4; i++)
@@ -29,7 +39,11 @@ int main()
 printf(">\n");

 // Compare element by element from both vectors and get the higher value
from each position
+ #ifdef __PPC__
+ v3 = vec__builtin_ia32_maxps(v1, v2);
+ #else
 v3 = __builtin_ia32_maxps(v1, v2);
+ #endif

 printf("SIMD maxps\nResult\nv3 = < ");
 for (i = 0; i < 4; i++)

The wizard found a corresponding function for function __builtin_ia32_addps(), and
informed us that we must implement our own version of function __builtin_ia32_maxps()
on vec__builtin_ia32_maxps() that is now before main(). Moreover, all PPC wrappers were
created.

This tool can automatically solve most (hundreds) of porting errors from x86 to ppc by clicking
a button on the ibm-sdk-lop interface. For more information about the SDK features, see the
Developing software using the IBM Software Development Kit for Linux on Power manual.

2.3 IBM Engineering and Scientific Subroutine Library

The IBM Engineering and Scientific Subroutine Library (ESSL) includes the following runtime
libraries:

� ESSL Serial Libraries and ESSL SMP Libraries
� ESSL SMP CUDA Library

The following mathematical subroutines, in nine computational areas, are tuned for
performance:

� Linear Algebra Subprograms

� Matrix Operations

� Linear Algebraic Equations

� Eigensystem Analysis

� Fourier Transforms, Convolutions and Correlations, and Related Computations v Sorting
and Searching

� Interpolation

� Numerical Quadrature

� Random Number Generation
34 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

ftp://public.dhe.ibm.com/software/server/iplsdk/v1.10.0/docs/liaal_pdf.pdf

2.3.1 ESSL Compilation in Fortran, XL C/C++, and GCC/G++

The ESSL subroutines are callable from programs, which are written in Fortran, C, and C++.
Table 2-5, Table 2-7 on page 36, and Table 2-9 on page 37 list how compilation on Linux
depends on the type of ESSL library (serial, SMP, or SMP CUDA), environment (32-bit
integer, 64-bit pointer or 64-bit integer, or 64-bit pointer) and compiler (XLF, XL C/C++, or
gcc/g++) is used.

Table 2-5 Fortran compilation commands for ESSL

To use the FFTW Wrapper libraries, the header file fftw3.f that contains the constant
definitions must be included. To use these definitions, complete one of the following tasks:

� Add the following line to your Fortran application: include "fftw3.f”
� Add the fftw3.f header file in your application

You also can compile and link with the FFTW Wrapper libraries by using the commands that
are listed in Table 2-6.

Table 2-6 Fortran compilation guidelines assume FFTW wrappers are in /usr/local/include

Type of ESSL
library

Environment Compilation command

Serial
32-bit integer, 64-bit pointer xlf_r -O -qnosave program.f -lessl

64-bit integer, 64-bit pointer xlf_r -O -qnosave program.f -lessl6464

SMP
32-bit integer, 64-bit pointer xlf_r -O -qnosave -qsmp program.f -lesslsmp

xlf_r -O -qnosave program.f -lesslsmp -lxlsmp

64-bit integer, 64-bit pointer xlf_r -O -qnosave -qsmp program.f -lesslsmp6464

xlf_r -O -qnosave program.f -lesslsmp6464 -lxlsmp

SMP CUDA 32-bit integer, 64-bit pointer
xlf_r -O -qnosave -qsmp program.f
-lesslsmpcuda -lcublas -lcudart
-L/usr/local/cuda/lib64
-R/usr/local/cuda/lib64

xlf_r -O -qnosave program.f
-lesslsmpcuda -lxlsmp -lcublas -lcudart
-L/usr/local/cuda/lib64
-R/usr/local/cuda/lib64

Type of ESSL
library

Environment Compilation command

Serial 32-bit integer, 64-bit pointer xlf_r -O -qnosave program.f
-lessl -lfftw3_essl
-I/usr/local/include
-L/usr/local/lib64

SMP 32-bit integer, 64-bit pointer xlf_r -O -qnosave program.f
-lesslsmp -lfftw3_essl
-I/usr/local/include
-L/usr/local/lib64
Chapter 2. Compilation, execution, and application development 35

Table 2-7 lists the compilation guidelines for ESSL using XL C/C++.

Table 2-7 XL C/C++ compilation commands (cc_r for XLC, xlC_r for XLC++) for ESSL

To compile and link the FFTW Wrapper libraries, the commands that are listed in Table 2-8
must be used. Also, use the header file fftw3_essl.h instead of fftw3.h.

Table 2-8 IBM XL C compilation guidelines to use the fftw wrapper libraries

Type of ESSL
library

Environment Compilation command

Serial 32-bit integer, 64-bit pointer cc_r (xlC_r) -O program.c
-lessl -lxlf90_r -lxlfmath
-L/opt/ibm/xlsmp/<xlsmp_version_release>/lib
-L/opt/ibm/xlf/<xlf_version_release>/lib
-R/opt/ibm/lib

64-bit integer, 64-bit pointer cc_r (xlC_r) -O -D_ESV6464 program.c
-lessl6464 -lxlf90_r -lxlfmath
-L/opt/ibm/xlsmp/<xlsmp_version_release>/lib
-L/opt/ibm/xlf/<xlf_version_release>/lib
-R/opt/ibm/lib

SMP 32-bit integer, 64-bit pointer
cc_r (xlC_r) -O program.c
-lesslsmp -lxlf90_r -lxlsmp -lxlfmath
-L/opt/ibm/xlsmp/<xlsmp_version_release>/lib
-L/opt/ibm/xlf/<xlf_version_release>/lib
-R/opt/ibm/lib

64-bit integer, 64-bit pointer cc_r (xlC_r) -O -D_ESV6464 program.c
-lesslsmp6464 -lxlf90_r -lxlsmp -lxlfmath
-L/opt/ibm/xlsmp/<xlsmp_version_release>/lib
-L/opt/ibm/xlf/<xlf_version_release>/lib
-R/opt/ibm/lib

SMP CUDA 32-bit integer, 64-bit pointer

cc_r (xlC_r) -O program.c
-lesslsmpcuda -lxlf90_r -lxlsmp
-lxlfmath -lcublas -lcudart
-L/usr/local/cuda/lib64
-R/usr/local/cuda/lib64
-L/opt/ibm/xlsmp/<xlsmp_version_release>/lib
-L/opt/ibm/xlf/<xlf_version_release>/lib
-R/opt/ibm/lib

Type of ESSL
library

Environment Compilation command

Serial 32-bit integer, 64-bit pointer cc_r (xlC_r) -O program.c
-lessl -lxlf90_r -lxlfmath -lfftw3_essl -lm
-L/opt/ibm/xlsmp/<xlsmp_version_release>/lib
-L/opt/ibm/xlf/<xlf_version_release>/lib
-R/opt/ibm/lib
-I/usr/local/include
-L/usr/local/lib64
36 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Table 2-9 lists the compilation commands for gcc/g++.

Table 2-9 C/C++ compilation commands (gcc for C, g++ for C++) for ESSL2

To compile and link the FFTW Wrapper libraries, the commands that are listed in Table 2-8 on
page 36 must be used. Also, use the header file fftw3_essl.h instead of fftw3.h.

SMP 32-bit integer, 64-bit pointer cc_r (xlC_r) -O program.c
-lesslsmp -lxlf90_r -lxlsmp -lxlfmath
-lfftw3_essl -lm
-L/opt/ibm/xlsmp/<xlsmp_version_release>/lib
-L/opt/ibm/xlf/<xlf_version_release>/lib
-R/opt/ibm/lib
-I/usr/local/include
-L/usr/local/lib64

Type of ESSL
library

Environment Compilation command

Serial 32-bit integer, 64-bit pointer
gcc (g++) program.c
-lessl -lxlf90_r -lxlfmath -lm
-L/opt/ibm/xlsmp/<xlsmp_version_release>/lib
-L/opt/ibm/xlf/<xlf_version_release>/lib
-R/opt/ibm/lib

64-bit integer, 64-bit pointer gcc (g++) -D_ESV6464 program.c
-lessl6464 -lxlf90_r -lxlfmath -lm
-L/opt/ibm/xlsmp/<xlsmp_version_release>/lib
-L/opt/ibm/xlf/<xlf_version_release>/lib
-R/opt/ibm/lib

SMP 32-bit integer, 64-bit pointer
gcc (g++) program.c
-lesslsmp -lxlf90_r -lxlsmp -lxlfmath -lm
-L/opt/ibm/xlsmp/<xlsmp_version_release>/lib
-L/opt/ibm/xlf/<xlf_version_release>/lib
-R/opt/ibm/lib

64-bit integer, 64-bit pointer gcc (g++) -D_ESV6464 program.c
-lesslsmp6464 -lxlf90_r -lxlsmp -lxlfmath -lm
-L/opt/ibm/xlsmp/<xlsmp_version_release>/lib
-L/opt/ibm/xlf/<xlf_version_release>/lib
-R/opt/ibm/lib

SMP CUDA 32-bit integer, 64-bit pointer

gcc (g++) program.c
-lesslsmpcuda -lxlf90_r -lxlsmp -lxlfmath -lm
-lcublas -lcudart
-L/usr/local/cuda/lib64
-R/usr/local/cuda/lib64
-L/opt/ibm/xlsmp/<xlsmp_version_release>/lib
-L/opt/ibm/xlf/<xlf_version_release>/lib
-R/opt/ibm/lib

2 The ESSL SMP libraries require XL OpenMP runtime. The gcc OpenMP runtime is not compatible with XL
OpenMP run time.

Type of ESSL
library

Environment Compilation command
Chapter 2. Compilation, execution, and application development 37

Table 2-10 lists the IBM XL C compilation guidelines to use the FFTW wrapper libraries,
assuming that the FFTW wrappers files are installed in /usr/local/include.

Table 2-10 IBM XL C compilation guidelines to use the FFTW wrapper libraries

2.3.2 ESSL example

To present the power of our ESSL API, Example 2-5 shows a C sample source code that
uses ESSL to perform the well-known dgemm example with matrixes of dimension [20000,
20000], while measuring the execution time and performance of this calculation.

Example 2-5 ESSL C dgemm_sample.c source code for a [20,000x20,000] calculation of dgemm

1. #include <stdio.h>
2. #include <stdlib.h>
3. #include <time.h>
4. #include <essl.h> //ESSL header for C/C++
5.
6. //Function to calculate time in milliseconds
7. long timevaldiff(struct timeval *starttime, struct timeval *finishtime)
8. {
9. long msec;
10. msec=(finishtime->tv_sec-starttime->tv_sec)*1000;
11. msec+=(finishtime->tv_usec-starttime->tv_usec)/1000;
12. return msec;
13.}
14.
15.int main()
16.{
17. struct timeval start, end;
18. double diff;
19. long n, m, k;
20. double *a, *b, *c;
21. double rmax, rmin;
22. double seed1, seed2, seed3;
23. double flop;
24.
25. //Seeds for matrix generation

Type of ESSL
library

Environment Compilation command

Serial 32-bit integer, 64-bit pointer gcc (g++) program.c
-lessl -lxlf90_r -lxlfmath -lfftw3_essl -lm
-L/opt/ibm/xlsmp/<xlsmp_version_release>/lib
-L/opt/ibm/xlf/<xlf_version_release>/lib
-R/opt/ibm/lib
-I/usr/local/include
-L/usr/local/lib64

SMP 32-bit integer, 64-bit pointer gcc (g++) program.c
-lesslsmp -lxlf90_r -lxlsmp -lxlfmath
-lfftw3_essl -lm
-L/opt/ibm/xlsmp/<xlsmp_version_release>/lib
-L/opt/ibm/xlf/<xlf_version_release>/lib
-R/opt/ibm/lib
-I/usr/local/include
-L/usr/local/lib64
38 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

26. seed1 = 5.0;
27. seed2 = 7.0;
28. seed3 = 9.0;
29.
30. //Maximum and minimum value elements of matrixes
31. rmax = 0.5;
32. rmin = -0.5;
33.
34. //Size of matrixes
35. n = 20000; m = n; k =n;
36.
37. //Number of additions and multiplications
38. flop = (double)(m*n*(2*(k-1)));
39.
40. //Memory allocation
41. a = (double*)malloc(n*k*sizeof(double));
42. b = (double*)malloc(k*m*sizeof(double));
43. c = (double*)malloc(n*m*sizeof(double));
44.
45. //Matrix generation
46. durand(&seed1,n*k,a); //DURAND are included to ESSL, not to CBLAS
47. cblas_dscal(n*k,rmax-rmin,a,1);
48. cblas_daxpy(n*k,1.0,&rmin,0,a,1);
49.
50. durand(&seed2,k*m,b);
51. cblas_dscal(k*m,rmax-rmin,b,1);
52. cblas_daxpy(k*m,1.0,&rmin,0,b,1);
53.
54. durand(&seed3,n*m,c);
55. cblas_dscal(n*m,rmax-rmin,c,1);
56. cblas_daxpy(n*m,1.0,&rmin,0,c,1);
57.
58. //Matrix multiplication (DGEMM)
59. gettimeofday(&start,NULL);
60. cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans,
61. m,n,k,1.0,a,n,b,k,1.0,c,n);
62. gettimeofday(&end,NULL);
63.
64. //Print results
65. printf("%.3lf seconds, ",(double)timevaldiff(&start,&end)/1000);
66. printf("%.3lf MFlops\n",flop/(double)timevaldiff(&start,&end)/1000.0);
67.
68. //Memory deallocation
69. free(a);
70. free(b);
71. free(c);
72.
73. return 0;
74.}
Chapter 2. Compilation, execution, and application development 39

The code uses ESSL routines that are called by CBLAS interfaces, which enable more
options to specify matrix order (column-major or row-major), for example. The calculation that
is performed by dgemm is done by using the following formula:

where, alpha and beta are real scalar values; and A, B, and C are matrixes of conforming
shape.

The algorithm is shown in Example 2-5 on page 38.

Example 2-6 shows how to compile and run the algorithm that is shown in Example 2-5 on
page 38 by using the serial version of ESSL and the XLC compiler instructions that are listed
in Table 2-7 on page 36.

Example 2-6 Compilation and execution of dgemm_sample.c for serial ESSL

$ cc_r -O3 dgemm_sample.c -lessl -lxlf90_r -lxlfmath -L/opt/ibm/xlsmp/4.1.5/lib
-L/opt/ibm/xlf/15.1.5/lib -R/opt/ibm/lib -o dgemm_serial

$./dgemm_serial
1070.551 seconds, 14944.950 MFlops

For more information about how to use and tune this example to gain performance, see 3.2.1,
“ESSL execution in multiple CPUs and GPUs” on page 94.

For more information about the new ESSL features, see the Engineering and Scientific
Subroutine Library page of the IBM Knowledge Center website.

For more information about the ESSL SMP CUDA library, see the Using the ESSL SMP
CUDA Library page of the IBM Knowledge Center website.

2.4 Parallel ESSL

Parallel ESSL v5.3.0 is a highly optimized mathematical subroutine library for clusters of
POWER8 processor nodes. Parallel ESSL supports the single program, multiple data
(SPMD) programming model that uses the Message Passing Interface (MPI) library. It also
assumes that your program is using the SPMD programming model. This configuration
means that all parallel tasks are identical and work on different sets of data.

Parallel ESSL supports only 32-bit integer and 64-bit pointer environment libraries, which
must be used with IBM Parallel Environment (PE) Runtime Edition MPICH library.

Parallel ESSL subroutines cover following computational areas:

� Level 2 Parallel Basic Linear Algebra Subprograms (PBLAS)
� Level 3 PBLAS
� Linear Algebraic Equations
� Eigensystem Analysis and Singular Value Analysis
� Fourier Transforms
� Random Number Generation

Parallel ESSL uses calls of the ESSL subroutines for computational purposes.

C α A B⋅ β C+=
40 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.ibm.com/support/knowledgecenter/SSFHY8_5.5.0/com.ibm.cluster.essl.v5r5.essl100.doc/am5gr_cuda.htm
http://www.ibm.com/support/knowledgecenter/SSFHY8_5.5.0/com.ibm.cluster.essl.v5r5.essl100.doc/am5gr_cuda.htm
https://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html
https://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html

For communication, Basic Linear Algebra Communications Subprograms (BLACS) is
included, which is based on MPI.

2.4.1 Program development

During the development process of your program, the BLACS subroutines must be used. To
include Parallel ESSL calls into the code of the program, complete the following steps:

1. Start the process grid by using the BLACS subroutines (BLACS_GET call and
BLACS_GRIDINIT or BLACS_GRIDMAP after it).

2. Distribute data across process grid. Try to use different block sizes to improve
performance of the program. For example, some Parallel ESSL subroutines start to use
GPU for large sizes of blocks (about 2000 by 2000).

3. Call the Parallel ESSL subroutine on all processes of the BLACS process grid.

4. Aggregate results of Parallel ESSL runs from all processes.

5. Call the BLACS subroutines to clean the process grid and exit, such as BLACS_GRIDEXIT,
BLACS_EXIT

Example 2-7 shows a sample Fortran dgemm implementation that uses the Parallel ESSL
version of PDGEMM subroutine for a 20000 by 20000 matrix size. PDGEMM works by using
the following formula:

where, alpha and beta are real scalar values; and A, B, and C are matrixes of conforming
shape.

The algorithm is shown in Example 2-7.

Example 2-7 PESSL Fortran example source code pdgemm_sample.f

1. program pdgemm_sample
2. implicit none
3. real*8, allocatable, dimension(:) :: a,b,c
4. integer, dimension(9) :: desca,descb,descc
5. integer m,n,k
6. integer np,nr,nc,mr,mc,icontxt,numroc,iam,nnodes
7. integer acol, bcol, ccol
8. real*8, parameter :: alpha = 2.d0
9. real*8, parameter :: beta = 3.d0
10. integer, parameter :: ia = 1, ib = 1, ic = 1
11. integer, parameter :: ja = 1, jb = 1, jc = 1
12.
13. integer, parameter :: nb = 200
14.! Bigger size for CUDA runs
15.! integer, parameter :: nb = 3000
16.
17.! Initialization of process grid
18. call blacs_pinfo(iam,np)
19. if (np.ne.20) then
20. print *, 'Test expects 20 nodes'
21. stop 1
22. else
23. nr = 5

C α A B⋅ β C+=
Chapter 2. Compilation, execution, and application development 41

24. nc = 4
25. endif
26. call blacs_get(0,0,icontxt)
27. call blacs_gridinit(icontxt,'r',nr,nc)
28. call blacs_gridinfo(icontxt,nr,nc,mr,mc)
29.
30.! Size of matrixes
31. m = 20000
32. n = 20000
33. k = 20000
34.
35.! Fill parameters for PDGEMM call
36. desca(1) = 1
37. desca(2) = icontxt
38. desca(3) = m
39. desca(4) = k
40. desca(5:6) = nb
41. desca(7:8) = 0
42. desca(9) = numroc(m,nb,mr,0,nr)
43. acol = numroc(k,nb,mc,0,nc)
44.
45. descb(1) = 1
46. descb(2) = icontxt
47. descb(3) = k
48. descb(4) = n
49. descb(5:6) = nb
50. descb(7:8) = 0
51. descb(9) = numroc(k,nb,mr,0,nr)
52. bcol = numroc(n,nb,mc,0,nc)
53.
54. descc(1) = 1
55. descc(2) = icontxt
56. descc(3) = m
57. descc(4) = n
58. descc(5:6) = nb
59. descc(7:8) = 0
60. descc(9) = numroc(m,nb,mr,0,nr)
61. ccol = numroc(n,nb,mc,0,nc)
62.
63. allocate(a(desca(9)*acol))
64. allocate(b(descb(9)*bcol))
65. allocate(c(descc(9)*ccol))
66.
67.! PDGEMM call
68. a = 1.d0
69. b = 2.d0
70. c = 3.d0
71. call pdgemm('N','N',m,n,k,alpha,a,ia,ja,desca,b,ib,jb,descb,
72. & beta,c,ic,jc,descc)
73.
74.! Deallocation of arrays and exit from BLACS
75. deallocate(a)
76. deallocate(b)
77. deallocate(c)
78. call blacs_gridexit(icontxt)
42 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

79. call blacs_exit(0)
80. end

For more information about the use of BLACS with the Parallel ESSL library, see the BLACS
Quick Reference Guide.

For more information about the concept of development using the Parallel ESSL library, see
this Concepts page of the IBM Knowledge Center website.

2.4.2 Using GPUs with Parallel ESSL

GPUs can be used by the local MPI tasks in the following ways within the Parallel ESSL
programs:

� GPUs are not shared

This setting means that each MPI task on a node uses unique GPUs. For this case, the
local rank of MPI tasks can be used.

Example 2-8 shows how to work with local rank by using the MP_COMM_WORLD_LOCAL_RANK
variable. It is created from Example 2-7 on page 41 with another section that gets the local
rank of the MPI task and assigns this task to a respective GPU by rank. Also, change the
size of the process grid to 4 by 2 to fit your cluster, which has two nodes with 4 GPUs on
each node, and uses a block size of 3000 by 3000.

The algorithm is shown in Example 2-8.

Example 2-8 PESSL Fortran example source code for non-shared GPUs

1. program pdgemm_sample_local_rank
2. implicit none
3. real*8, allocatable, dimension(:) :: a,b,c
4. integer, dimension(9) :: desca,descb,descc
5. integer m,n,k
6. integer ids(1)
7. integer ngpus
8. integer np,nr,nc,mr,mc,icontxt,numroc,iam,nnodes
9. integer acol, bcol, ccol
10. real*8, parameter :: alpha = 2.d0
11. real*8, parameter :: beta = 3.d0
12. integer, parameter :: ia = 1, ib = 1, ic = 1
13. integer, parameter :: ja = 1, jb = 1, jc = 1
14.
15. integer, parameter :: nb = 3000
16.
17. character*8 rank
18. integer lrank,istat
19.
20.! Initialization of process grid
21. call blacs_pinfo(iam,np)
22. if (np.ne.8) then
23. print *, 'Test expects 8 nodes'
24. stop 1
25. else
26. nr = 4
27. nc = 2
28. endif
Chapter 2. Compilation, execution, and application development 43

http://www.ibm.com/support/knowledgecenter/SSNR5K_5.3.0/com.ibm.cluster.pessl.v5r3.pssl100.doc/am6gr_dapc.htm
http://www.ibm.com/support/knowledgecenter/SSNR5K_5.3.0/com.ibm.cluster.pessl.v5r3.pssl100.doc/am6gr_dapc.htm
http://www.ibm.com/support/knowledgecenter/SSNR5K_5.3.0/com.ibm.cluster.pessl.v5r3.pssl100.doc/am6gr_dlaspro.htm

29. call blacs_get(0,0,icontxt)
30. call blacs_gridinit(icontxt,'r',nr,nc)
31. call blacs_gridinfo(icontxt,nr,nc,mr,mc)
32.
33.! Get local rank and assign respective GPU
34. call getenv('MP_COMM_WORLD_LOCAL_RANK',value=rank)
35. read(rank,*,iostat=istat) lrank
36. ngpus = 1
37. ids(1) = lrank
38. call setgpus(1,ids)
39.
40.! Size of matrixes
41. m = 20000
42. n = 20000
43. k = 20000
44.
45.! Fill parameters for PDGEMM call
46. desca(1) = 1
47. desca(2) = icontxt
48. desca(3) = m
49. desca(4) = k
50. desca(5:6) = nb
51. desca(7:8) = 0
52. desca(9) = numroc(m,nb,mr,0,nr)
53. acol = numroc(k,nb,mc,0,nc)
54.
55. descb(1) = 1
56. descb(2) = icontxt
57. descb(3) = k
58. descb(4) = n
59. descb(5:6) = nb
60. descb(7:8) = 0
61. descb(9) = numroc(k,nb,mr,0,nr)
62. bcol = numroc(n,nb,mc,0,nc)
63.
64. descc(1) = 1
65. descc(2) = icontxt
66. descc(3) = m
67. descc(4) = n
68. descc(5:6) = nb
69. descc(7:8) = 0
70. descc(9) = numroc(m,nb,mr,0,nr)
71. ccol = numroc(n,nb,mc,0,nc)
72.
73. allocate(a(desca(9)*acol))
74. allocate(b(descb(9)*bcol))
75. allocate(c(descc(9)*ccol))
76.
77.! PDGEMM call
78. a = 1.d0
79. b = 2.d0
80. c = 3.d0
81. call pdgemm('N','N',m,n,k,alpha,a,ia,ja,desca,b,ib,jb,descb,
82. & beta,c,ic,jc,descc)
83.
44 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

84.! Deallocation of arrays and exit from BLACS
85. deallocate(a)
86. deallocate(b)
87. deallocate(c)
88. call blacs_gridexit(icontxt)
89. call blacs_exit(0)
90. end

� GPUs are shared

This setting is used when the number of MPI tasks per node oversubscribe the GPUs.
Parallel ESSL recommends the use of NVIDIA MPS, as described in 4.5.2, “CUDA
Multi-Process Service” on page 156. The process allows you to use multiple MPI tasks
concurrently by using GPUs.

To inform Parallel ESSL which GPUs to use for MPI tasks, use the SETGPUS subroutine.
Example 2-9 shows the updated version of Example 2-15 on page 61, where Parallel
ESSL uses only one GPU for each MPI task, and the GPU is assigned in round-robin
order. The algorithm is shown in Example 2-9.

Example 2-9 Call of SETGPUS subroutine for 1 GPU usage

1. program pdgemm_sample
2. implicit none
3. real*8, allocatable, dimension(:) :: a,b,c
4. integer, dimension(9) :: desca,descb,descc
5. integer m,n,k
6. integer ids(1)
7. integer ngpus
8. integer np,nr,nc,mr,mc,icontxt,numroc,iam,nnodes
9. integer acol, bcol, ccol
10. real*8, parameter :: alpha = 2.d0
11. real*8, parameter :: beta = 3.d0
12. integer, parameter :: ia = 1, ib = 1, ic = 1
13. integer, parameter :: ja = 1, jb = 1, jc = 1
14.
15. integer, parameter :: nb = 3000
16.
17.! Initialization of process grid
18. call blacs_pinfo(iam,np)
19. if (np.ne.20) then
20. print *, 'Test expects 20 nodes'
21. stop 1
22. else
23. nr = 5
24. nc = 4
25. endif
26. ngpus = 1
27. ids(1) = mod(iam,4)
28. call setgpus(ngpus,ids)
29. call blacs_get(0,0,icontxt)
30. call blacs_gridinit(icontxt,'r',nr,nc)
31. call blacs_gridinfo(icontxt,nr,nc,mr,mc)

Note: It is possible that Parallel ESSL is unable to allocate memory on the GPU. In this
case, you can reduce the number of MPI tasks per node.
Chapter 2. Compilation, execution, and application development 45

32.
33.! Size of matrixes
34. m = 20000
35. n = 20000
36. k = 20000
37.
38.! Fill parameters for PDGEMM call
39. desca(1) = 1
40. desca(2) = icontxt
41. desca(3) = m
42. desca(4) = k
43. desca(5:6) = nb
44. desca(7:8) = 0
45. desca(9) = numroc(m,nb,mr,0,nr)
46. acol = numroc(k,nb,mc,0,nc)
47.
48. descb(1) = 1
49. descb(2) = icontxt
50. descb(3) = k
51. descb(4) = n
52. descb(5:6) = nb
53. descb(7:8) = 0
54. descb(9) = numroc(k,nb,mr,0,nr)
55. bcol = numroc(n,nb,mc,0,nc)
56.
57. descc(1) = 1
58. descc(2) = icontxt
59. descc(3) = m
60. descc(4) = n
61. descc(5:6) = nb
62. descc(7:8) = 0
63. descc(9) = numroc(m,nb,mr,0,nr)
64. ccol = numroc(n,nb,mc,0,nc)
65.
66. allocate(a(desca(9)*acol))
67. allocate(b(descb(9)*bcol))
68. allocate(c(descc(9)*ccol))
69.
70.! PDGEMM call
71. a = 1.d0
72. b = 2.d0
73. c = 3.d0
74. call pdgemm('N','N',m,n,k,alpha,a,ia,ja,desca,b,ib,jb,descb,
75. & beta,c,ic,jc,descc)
76.
77.! Deallocation of arrays and exit from BLACS
78. deallocate(a)
79. deallocate(b)
80. deallocate(c)
81. call blacs_gridexit(icontxt)
82. call blacs_exit(0)
83. end
46 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Example 2-8 on page 43 explicitly states to use two GPUs per MPI task. To change to this
configuration, change the following lines:

ngpus = 1

 ids(1) = mod(iam,4)

to the following lines:

ngpus = 2

 ids(1) = mod(iam,2)*2

 ids(2) = mod(iam,2)*2 + 1

2.4.3 Compilation

The Parallel ESSL subroutines can be called from 64-bit-environment application programs,
which are written in Fortran, C, and C++. Compilation commands of source code for different
type of Parallel ESSL library (SMP and SMP CUDA) using MPICH libraries are described in
Table 2-11, Table 2-12, Table 2-13 on page 48, Table 2-14 on page 48 and Table 2-15 on
page 49.

You do not need to modify your Fortran compilation procedures when Parallel ESSL for Linux
is used. When linking and running your program, you must modify your job procedures to set
up the necessary libraries. If you are accessing Parallel ESSL for Linux from a Fortran
program, you can compile and link by using the commands that are listed in Table 2-11.

Table 2-11 Fortran compilation commands for PESSL using Spectrum MPI libraries

The Parallel ESSL for Linux header files pessl.h and Cblacs.h, which are used for C and C++
programs, are installed in the /usr/include directory. When linking and running your
program, you must modify your job procedures to set up the necessary libraries. If you are
accessing Parallel ESSL for Linux from a C program, you can compile and link by using the
commands that are listed in Table 2-12.

Table 2-12 C program compile and link commands for use with Spectrum MPI

Type of PESSL library Compilation command

64-bit SMP mpifort -O program.f -lesslsmp -lpesslsmp -lblacssmp
-lxlsmp

64-bit SMP CUDA
mpifort -O xyz.f -lesslsmpcuda -lpesslsmp -lblacssmp
-lxlsmp -lcublas -lcudart -L/usr/local/cuda/lib64
-R/usr/local/cuda/lib64

Type of PESSL library Compilation command

64-bit SMP mpicc -O program.c
-lesslsmp -lpesslsmp -lblacssmp -lxlf90_r -lxlsmp -lxlfmath
-lmpi_mpifh
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib
Chapter 2. Compilation, execution, and application development 47

To use gcc as your C compiler, you can compile and link by using the commands that are
listed in Table 2-13.

Table 2-13 C program gcc compile and link commands for use with Spectrum MPI

To develop C++ programs with PEESL, use the commands that are listed in Table 2-14.

Table 2-14 C++ program compile and link commands for use with Spectrum MPI

64-bit SMP CUDA mpicc -O program.c
-lesslsmpcuda -lpesslsmp -lblacssmp -lxlf90_r -lxlsmp
-lxlfmath -lmpi_mpifh -lcublas -lcudart
-L/usr/local/cuda/lib64 -R/usr/local/cuda/lib64
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

Type of PESSL library Compilation command

64-bit SMP export OMPI_CC=gcc

mpicc -O xyz.c -lesslsmp -lpesslsmp -lblacssmp -lxlf90_r
-lxl -lxlsmp -lxlfmath -lm -lmpi_mpifh
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

64-bit SMP CUDA export OMPI_CC=gcc

mpicc -O program.c
-lesslsmpcuda -lpesslsmp -lblacssmp -lxlf90_r -lxl -lxlsmp
-lxlfmath -lm -lmpi_mpifh -lcublas -lcudart
-L/usr/local/cuda/lib64
-R/usr/local/cuda/lib64
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

Type of PESSL library Compilation command

64-bit SMP mpiCC -O program.C
-lesslsmp -lpesslsmp -lblacssmp -lxlf90_r -lxlsmp -lxlfmath
-lmpi_mpifh
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

64-bit SMP CUDA mpiCC -O program.C
-lesslsmpcuda -lpesslsmp -lblacssmp -lxlf90_r -lxlsmp
-lxlfmath -lmpi_mpifh -lcublas -lcudart
-L/usr/local/cuda/lib64
-R/usr/local/cuda/lib64
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

Type of PESSL library Compilation command
48 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

To use g++ as your C++ compiler, you can compile and link by using the commands that are
listed in Table 2-15.

Table 2-15 C++ program g++ compile and link commands for use with Spectrum MPI

For more information about all of the features of our new Parallel ESSL library, see the
Parallel Engineering and Scientific Subroutine Library V5.3 Documentation page of the IBM
Knowledge Center website.

2.5 Using POWER8 vectorization

The single-instruction, multiple-data (SIMD) instructions are building blocks that are used to
use parallelism at CPU level. The Power architecture implements SIMD through the VMX and
VSX technologies, which are specified in the Power Instruction Set Architecture (Power ISA)
version 2.07 for POWER8 generation processor.

Techniques to use data parallelism through SIMD instructions are often called vectorization.
They can be used by the compiler in the form of auto-vectorization transformations or made
available to applications as application programming interface (API).

GNU GCC and IBM XL compilers provide vector APIs that are based on the AltiVec
specification for C, C++, and Fortran. Their API is composed of built-in functions (also known
as intrinsics), defined vector types, and extensions to the programming language semantics.
Each compiler vector implementation is explained in the following sections.

For more information about the auto-vectorization features of the GCC and XL compilers, see
2.1, “Compiler options” on page 24.

Type of PESSL library Compilation command

64-bit SMP export OMPI_CXX=g++

mpiCC -O program.C
-lesslsmp -lpesslsmp -lblacssmp -lxlf90_r -lxl -lxlsmp
-lxlfmath -lm -lmpi_mpifh
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

64-bit SMP CUDA export OMPI_CXX=g++

mpiCC -O program.C
-lesslsmpcuda -lpesslsmp -lblacssmp -lxlf90_r -lxl -lxlsmp
-lxlfmath -lm -lmpi_mpifh -lcublas -lcudart
-L/usr/local/cuda/lib64
-R/usr/local/cuda/lib64
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib
Chapter 2. Compilation, execution, and application development 49

http://www.ibm.com/support/knowledgecenter/SSNR5K_5.3.0/pessl.v5r3_welcome.html

2.5.1 AltiVec operations with GNU GCC

GNU GCC provides a modified API that enables the use of AltiVec operations for the
PowerPC family of processors. This interface is made available by including <altivec.h> in
the source code and using -maltivec and -mabi=altivec compiling functions. This feature is
also made available if the code is compiled with -mvsx, because this option enables
-maltivec with more features that use VSX instructions.

For more information about the AltiVec API specification, see the “PowerPC AltiVec Built-in
Functions” section of Using the GNU Compiler Collection (GCC) manual.

The following features are implemented:

� Add the keywords __vector, vector, __pixel, pixel, __bool, and bool. The vector, pixel,
and bool keywords are implemented as context-sensitive, predefined macros that are
recognized only when used in C-type declaration statements. In C++ applications, they
can be undefined for compatibility.

� Unlike the AltiVec specification, the GNU/GCC implementation does not allow a typedef
name as a type identifier. You must use the actual __vector keyword; for example, typedef
signed short int16; __vector int16 myvector.

� Vector data types are aligned on a 16-byte boundary.

� Aggregates (structures and arrays) and unions that contain vector types must be aligned
on 16-byte boundaries.

� Load or store to unaligned memory must be carried out explicitly by one of the vec_ld,
vec_ldl, vec_st, or vec_stl operations. However, the load of an array of components
does not need to be aligned, but it must be accessed with attention to its alignment, which
is often carried out with a combination of vec_lvsr, vec_lvsl, and vec_perm operations.

� The use of sizeof() for vector data types (or pointers) returns 16, for 16 bytes.

� Assignment operation (a = b) is allowed only if both sides have the same vector types.

� Address operation &p is valid if a is p vector type.

� The usual pointer arithmetic can be performed on vector type pointer p, in particular:

– p+1 is a pointer to the next vector after p.

– Pointer dereference (*p) implies either a 128-bit vector load from or store to the
address that is obtained by clearing the low-order bits of p.

C arithmetic and logical operators (+, -, *, /, unary minus, ^, |, &, ~, and %), shifting operators
(<< and >>), and comparison operators (==, !=, <, <=, >, and >=) can be used on these types.
The compiler generates the correct SIMD instructions for the hardware.

Table 2-16 shows vector data type extensions as implemented by GCC. Vector types are
signed by default, unless an otherwise unsigned keyword is specified. The only exception is
vector char, which is unsigned by default. The hardware does not have instructions for
supporting vector long long and vector bool long long types, but they can be used for
float-point/integer conversions.

Table 2-16 Vector types as implemented by GCC

Vector types Description

vector char Vector of 16 8-bit char

vector bool Vector of 16 8-bit unsigned char

vector short Vector of eight 16-bit short
50 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

https://gcc.gnu.org/onlinedocs/gcc-4.8.5/gcc.pdf

In addition to vector operations, GCC has a built-in function for cryptographic instructions that
operate in vector types. For more information about the implementation and a comprehensive
list of built-in functions, see the PowerPC AltiVec section in GNU GCC.

2.5.2 AltiVec operations with IBM XL

The IBM XL compiler family provides an implementation of AltiVec APIs through feature
extensions for C and C++. Fortran extensions for vector support are also available.

XL C/C++
To use vector extensions, the application must be compiled with -mcpu=pwr8, and -qaltivec
must be in effect.

The XL C/C++ implementation defines the vector (or alternatively, __vector) keywords that
are used in the declaration of vector types.

Similar to GCC implementation, XL C/C++ allows unary, binary, and relational operators to be
applied to vector types. It implements all data types that are listed in Table 2-16 on page 50.

The indirection operator, asterisk (*), is extended to handle pointer to vector types. Pointer
arithmetic is also defined so that a pointer to the following vector can be expressed as v+ 1.

Vector types can be cast to other vector types (but not allowed to a scalar). The casting does
not represent a conversion; therefore, it is subject to changes in element value. Casting
between vector and scalar pointers is also allowed if memory is maintained on 16-byte
alignment.

For more information about XL C/C++ 13.1.5 vector support, vector initialization, and the
vec_step operator, see the Extensions for vector processing support manual.

For more information about built-in functions for vector operations is available at XL C and
C++ 1.3.1.5 manual at the Vector built-in functions page of the IBM Knowledge Center
website.

vector bool short Vector of eight 16-bit unsigned short

vector pixel Vector of eight 16-bit unsigned short

vector int Vector of four 32-bit integer

vector bool int Vector of four 32-bit integer

vector float Vector of four 32-bit float

vector double Vector of two 64-bit double. Requires compile with -mvsx

vector long Vector of two 64-bit signed integer. It is implemented in 64-bit mode only.
Requires compile with -mvsx

vector long long Vector of two 64-bit signed integer

vector bool long Vector of two 64-bit signed integer

Vector types Description
Chapter 2. Compilation, execution, and application development 51

https://gcc.gnu.org/onlinedocs/gcc-4.8.5/gcc/PowerPC-AltiVec_002fVSX-Built-in-Functions.html#PowerPC-AltiVec_002fVSX-Built-in-Functions
http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.3/com.ibm.xlcpp1313.lelinux.doc/compiler_ref/vec_intrin_cpp.html
http://www.ibm.com/support/knowledgecenter/en/SSXVZZ_13.1.5/com.ibm.xlcpp1315.lelinux.doc/language_ref/altivec_exts_both.html

XL Fortran
To use vector extensions, the application must comply with -qarch=pwr8.

The XL Fortran language extension defines the VECTOR keyword, which is used to declare
16-byte vector entities that can hold PIXEL, UNSIGNED, INTEGER, and REAL type elements. PIXEL
(2 bytes) and UNSIGNED (unsigned integer) types also are extensions to the language. They
must be used within vectors only.

Vectors are automatically aligned to 16 bytes, but exceptions apply. For more information
about vector types on XL Fortran 15.1.5, see the Vector (IBM extension) for Version 15.1.5
page of the IBM Knowledge Center website.

For the list of vector intrinsic procedures available with XL Fortran 15.1.3, see the Vector
instrinsic procedures (IBM extension) for Version 15.1.5 page of the IBM Knowledge Center
website.

Example 2-10 uses the Fortran XL vector library to perform the following calculation:

where, alpha and beta are real scalar values; and A, B, and C are matrixes of conforming
shapes.

Lines 11 - 14 in Example 2-10 show declaration of vectors with 16 elements of 8 bytes of real
types. Called methods vec_xld2 (load), vec_permi (permuting), and vec_madd (fused) are
multiply add SIMD operations that are applied to the vector types.

Example 2-10 Fortran program that demonstrates use of XL compiler vectors

1 SUBROUTINE VSX_TEST
2 implicit none
3
4 real*8, allocatable :: A(:), B(:), C(:), CT(:)
5 real*8 alpha
6 integer*8 max_size, ierr
7 integer*8 i, j, it
8 integer*8 ia, ialign
9 integer n, nalign
10
11 vector(real*8) va1, va2, va3
12 vector(real*8) vb1, vb2
13 vector(real*8) vc1, vc2
14 vector(real*8) valpha
15
16 max_size = 2000
17 alpha = 2.0d0
18
19 ierr = 0
20 allocate(A(max_size),stat=ierr)
21 allocate(B(max_size),stat=ierr)
22 allocate(C(max_size),stat=ierr)
23 allocate(CT(max_size),stat=ierr)
24 if (ierr .ne. 0) then
25 write(*,*) 'Allocation failed'
26 stop 1
27 endif

C α A B+=
52 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.5/com.ibm.xlf1515.lelinux.doc/language_ref/vmxintrinsics.html
http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.5/com.ibm.xlf1515.lelinux.doc/language_ref/vmxintrinsics.html
http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.5/com.ibm.xlf1515.lelinux.doc/language_ref/vectordatatype.html
http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.5/com.ibm.xlf1515.lelinux.doc/language_ref/vectordatatype.html
http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.5/com.ibm.xlf1515.lelinux.doc/language_ref/vectordatatype.html
http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.5/com.ibm.xlf1515.lelinux.doc/language_ref/vectordatatype.html

28
29 do i = 1, max_size
30 a(i) = 1.0d0*i
31 b(i) = -1.0d0*i
32 ct(i) = alpha*a(i) + b(i)
33 enddo
34
35 ia = LOC(A)
36 ialign = IAND(ia, 15_8)
37 nalign = MOD(RSHIFT(16_8-ialign,3_8),7_8) + 2
38
39 ! Compute Head
40 j = 1
41 do i = 1, nalign
42 C(j) = B(j) + alpha * A(j)
43 j = j + 1
44 enddo
45
46 n = max_size - nalign - 4
47 it = rshift(n, 2)
48
49 va1 = vec_xld2(-8, A(j))
50 va2 = vec_xld2(8, A(j))
51 va3 = vec_xld2(24, A(j))
52
53 va1 = vec_permi(va1, va2, 2)
54 va2 = vec_permi(va2, va3, 2)
55
56 vb1 = vec_xld2(0, B(j))
57 vb2 = vec_xld2(16, B(j))
58
59 do i = 1, it-1
60 vc1 = vec_madd(valpha, va1, vb1)
61 vc2 = vec_madd(valpha, va2, vb2)
62
63 va1 = va3
64 va2 = vec_xld2(40, A(j))
65 va3 = vec_xld2(56, A(j))
66
67 va1 = vec_permi(va1, va2, 2)
68 va2 = vec_permi(va2, va3, 2)
69
70 call vec_xstd2(va1, 0, C(j))
71 call vec_xstd2(va2, 16, C(j))
72
73 vb1 = vec_xld2(32, B(j))
74 vb1 = vec_xld2(48, B(j))
75
76 j = j + 4
77 enddo
78
79 vc1 = vec_madd(valpha, va1, vb1)
80 vc2 = vec_madd(valpha, va2, vb2)
81
82 call vec_xstd2(va1, 0, C(j))
Chapter 2. Compilation, execution, and application development 53

83 call vec_xstd2(va2, 16, C(j))
84
85 ! Compute Tail
86 do i = j, max_size
87 C(i) = B(i) + alpha * A(i)
88 enddo
89
90 do i = 1, 10
91 write(*,*) C(i), CT(i)
92 enddo
93
94 END SUBROUTINE VSX_TEST

2.6 Development models

The high-performance computing (HPC) solution that is proposed in this book contains a
software stack that allows for the development of C, C++, and Fortran applications by using
different parallel programming models. In this context, applications can be implemented by
using pure models as MPI, OpenMP, CUDA, OpenACC, PAMI, or OpenSHMEM, or by using
some combinations of these models (also known as hybrid models).

This section describes aspects of the IBM PE, compilers (GNU and IBM XL families),
libraries, and toolkits that developers can use to implement applications on pure or hybrid
parallel programming models. It does not describe how those applications can be run with
IBM PE (for more information, see 3.3, “Using IBM Parallel Environment v2.3” on page 104).

2.6.1 OpenMP programs with the IBM Parallel Environment

The OpenMP applies a shared memory parallel programming model of development. It is a
multi-platform directive-based API that is available to many languages, including C, C++, and
Fortran.

The development and execution of OpenMP applications are fully supported by the IBM PE
Runtime. OpenMP parallelism uses directives that use what is known as shared memory
parallelism, considering it defines various types of parallel regions. The parallel regions can
include iterative and non-iterative segments of code.

The use of the #pragma omp directives ordinarily can occasionally be distinguished into the
following general categories:

� Defines parallel regions in which work is done by threads in parallel (#pragma omp
parallel). Most of the OpenMP directives statically or dynamically bind to an enclosing
parallel region.

� Defines how work is distributed or shared across the threads in a parallel region (#pragma
omp sections, #pragma omp for, #pragma omp single, and #pragma omp task).

� Controls synchronization among threads (#pragma omp atomic, #pragma omp master,
#pragma omp barrier, #pragma omp critical, #pragma omp flush, and #pragma omp
ordered).

� Defines the scope of data visibility across parallel regions within the same thread (#pragma
omp threadprivate).

� Controls synchronization (#pragma omp taskwait and #pragma omp barrier).
54 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

� Controls data or computation that is on another computing device.

Also, you can specify visibility context for selected data variables by using some OpenMP
clauses. Scope attribute clauses are listed in Table 2-17.

Table 2-17 Openmp variable scope on IBM Parallel Environment

To demonstrate some of the clauses that are listed in Table 2-17, Example 2-11 shows the
following simple parallel algorithm that can be used to calculate the dot product of two
vectors:

where A and B are vectors of conforming shape. The algorithm is shown in Example 2-11.

Example 2-11 ESSL C dgemm_sample.c source code for a [20,000x20,000] calculation of dgemm

1. #include <stdio.h>
2. #include <stdlib.h>
3. #include <stdint.h>
4. #include <time.h>
5. #include <sys/time.h>
6. #include <omp.h>
7.
8. void print_v(double*,int);
9.
10.int main(int argc, char* argv[])
11.{
12. if(argc!=4) { printf("No verbose || size of vectors || or number of

threads provided\nAborting...\n"); return -1; }
13.
14. int i, verbose, N, n_threads;

Data scope
attribute clause

Description

private The private clause declares the variables in the list to be private to
each thread in a team.

firstprivate The firstprivate clause declares the variables in the list to be private to
each thread in a team with the value that variable had before the parallel
section.

lastprivate Similar to the firstprivate, the lastprivate updates the variable in the from
outer scope of the parallel region with the last value it had in the parallel
region.

shared The shared clause declares the variables in the list to be shared among
all the threads in a team. All threads within a team access the same storage
area for shared variables.

reduction The reduction clause performs a reduction on the scalar variables that
appear in the list, with a specified operation.

default The default clause allows the user to affect the data-sharing attribute
of the variables that appeared in the parallel construct.

A B⋅ aibi

i 1=

N

=

A, a1 a2 … a, , , N() B; b1 b2 … bN, , ,()= =
Chapter 2. Compilation, execution, and application development 55

15. double *a, *b, sum;
16.
17. sum = 0.0;
18. verbose = atoi(argv[1]);
19. N = atoi(argv[2]);
20. n_threads = atoi(argv[3]);
21. a = (double*) malloc(sizeof(double)*N);
22. b = (double*) malloc(sizeof(double)*N);
23.
24. for(i=0;i<N;i++)
25. a[i]=b[i]=(double)(i+1);
26.
27. #pragma omp parallel for default(none) firstprivate(N) private(i)

shared(a,b) reduction(+:sum) num_threads(n_threads)
28. for(i=0; i<N; i++)
29. sum += a[i] * b[i];
30.
31.if(verbose) { printf("[A] = "); print_v(a,N); printf("[B] = "); print_v(b,N); }
32.
33. printf("[A]*[B] = %.2f\n", sum);
34.
35. return 0;
36.}
37.
38.void print_v(double *v, int N)
39.{
40. int i; printf("[");
41. for(i=0;i<N;i++)
42. {
43. if(i!=(N-1))
44. printf("%.2f ",v[i]);
45. else
46. printf("%.2f]\n",v[i]);
47. }
48.}

Line 27 from the source code that is shown in Example 2-11 on page 55 is of our interest in
this section. The default(none) is used to make the compiler remind us that it must know the
scope of each variable in the parallel section.

The firstprivate(N) is used because we want each thread to not only have its own N value,
but the previous value of N. However, the private(i) is there because we want the loop
variable to be thread independent and we do not need its previous value. Also, the shared
variables are the data to be accessed by each thread independently because of the private i
index. The reduction(sum) is there because we want to add all independent products in the
sum variable after the loop. The num_thread(n_threads) is there to define the number of
threads to run our #pragma omp parallel section.

Example 2-12 shows how to compile the source code.

Example 2-12 Compiling an OpenMP program with XL

$ /opt/ibm/xlC/13.1.5/bin/cc_r -O3 -Wall -o dot_xlc dot_xlc.c -qsmp=omp -mcpu=pwr8
-mtune=pwr8
56 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

From a compiler perspective, XL C/C++ 13.1.5 and Fortran 15.1.5 provide full support to
OpenMP API version 3.1, and partial support to versions 4.0 and 4.5. Similarly, the GNU GCC
compiler that is provided by the Linux distribution is based on OpenMP API version 3.1.

For more information about XL 13.1.5 and OpenMP, see Optimization and Programming
Guide for Little Endian Distributions.

For more information about OpenMP examples and the directives and their applications, see
OpenMP Application Programming Interface: Examples.

For more information about offloading code to GPU, see the Offloading Support in GCC page
of the GCC Wiki.

2.6.2 CUDA C programs with the NVIDIA CUDA Toolkit

The development of parallel programs that use the General Purpose GPU (GPGPU) model is
provided in the IBM Power System S822LC with support of the NIVIDIA CUDA Toolkit 8.0 for
Linux on POWER8 Little Endian.

This section describes relevant aspects to the CUDA development in the proposed solution.
This section also describes characteristics of the NVIDIA P100 GPU, integration between
compilers, and availability of libraries. For more information about the NVIDIA CUDA
development model and resources, see the NVIDIA CUDA Zone website.

Understanding the NVIDIA P100 GPU CUDA capabilities
The NVIDIA Tesla P100 is a dual-GPU product with two attached GPUs, each implementing
the Pascal P100/SXM2 CUDA compute architecture. As such, the host operating system
recognizes four GPUs in an IBM S822LC system that is fully populated with two Tesla P100
cards.

The Pascal P100 architecture delivers CUDA compute capability version 6.0.

Table 2-18 lists the available resources (per GPU) and the limitations for the CUDA C++
applications that are found with the deviceQuery script that is available with the sample codes
from NVIDIA.

Table 2-18 CUDA available resources per GPU

GPU resources Value

Total of global memory 16 GB

Total amount of constant memory 64 KB

Shared memory per block 48 KB

Stream Multiprocessors (SMs) 56

Maximum warps per SM 64

Threads per Warps 32

Maximum threads per SM 2048

Maximum thread blocks per SM 32

Maximum threads per block 1024

Maximum grid size (x, y, z) = (2147483647, 65535, 65535)
Chapter 2. Compilation, execution, and application development 57

http://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf
http://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf
http://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf
http://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf
http://www-01.ibm.com/support/docview.wss?uid=swg27048883&aid=11
http://www-01.ibm.com/support/docview.wss?uid=swg27048883&aid=11
https://gcc.gnu.org/wiki/Offloading
http://developer.nvidia.com/cuda-zone
http://developer.nvidia.com/cuda-zone

The GP100 GPU that is included in the Tesla P100 has the following innovative features:

� Extreme performance: Powering HPC, deep learning, and many more GPU Computing
areas

� NVLink: NVIDIA’s new high-speed, high-bandwidth interconnect for maximum application
scalability

� HBM2: Fastest, high-capacity, efficient stacked GPU memory architecture

� Unified memory and compute preemption: Significantly improved programming model

� 16nm FinFET: Enables more features, higher performance, and improved power efficiency

NVIDIA nvcc compiler
The NVIDIA nvcc compiler driver is responsible for generating the final executable file, which
is a combination of host (CPU) and device (GPU) codes.

IBM XL and GNU GCC compilers can be used to generate the host code and their flags. As
described in 2.1, “Compiler options” on page 24, this process produces an optimized code to
run in the IBM POWER8 processor. By default, nvcc uses the GNU GCC, unless the -ccbin
flag is passed to set another back-end compiler.

The NVIDIA Tesla P100 GPUs are built on Pascal GP100 architecture, which provides CUDA
compute capability v6.0. Use the -gencode compiler option to set the virtual architecture and
binary compatibility; for example, -gencode arch=compute_60,code=sm_60 generates code
that is compatible with the Pascal GP100 architecture (virtual architecture 6.0).

Example 2-13 shows a CUDA program that prints to standard output the index values for 2D
thread blocks. The executable file is built with nvcc that uses xlC as the host compiler (-ccbin
xlC option). Parameters to xlC are passed with -Xcompiler option.

Example 2-13 CUDA C program and nvcc compilation

$ cat -n hello.cu
1. #include<cuda_runtime.h>
2. #include<stdio.h>
3.
4. __global__ void helloKernel() {
5. int tidx = threadIdx.x;

Max dimension size of a thread block (x,y,z) (x,y,z) = (1024, 1024, 64)

Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384,
16384, 16384)

Maximum layered texture Size and number of
layers

1D=(32768), 2048 layers, 2D=(32768, 32768),
2048 layers

Note: GPUDirect is not supported on the IBM Power Systems servers at the time this
writing, although the IBM Parallel Environment provides an CUDA-Aware API that supports
GPU to GPU buffer transfers. For more information, see 2.6.6, “Hybrid MPI and CUDA
programs with IBM Parallel Environment” on page 75.

Note: The nvcc compiler uses the GNU GCC C++ compiler by default to generate the host
code. If wanted, the IBM XL C++ compiler instead uses the -ccbin xlC option.

GPU resources Value
58 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

6. int tidy = threadIdx.y;
7. int blockidx = blockIdx.x;
8. int blockidy = blockIdx.y;
9.
10. printf("I am CUDA thread (%d, %d) in block (%d, %d)\n",
11. tidx, tidy, blockidx, blockidy);
12. };
13.
14.int main(int argc, char* argv[]) {
15. dim3 block(16,16);
16. dim3 grid(2,2);
17. helloKernel<<<grid, block>>>();
18. cudaDeviceSynchronize();
19. return 0;
20.}

$ nvcc -ccbin xlC -Xcompiler="-qarch=pwr8 -qtune=pwr8 -qhot -O3" -gencode
arch=compute_60,code=sm_60 hello.cu -o helloCUDA
$./helloCUDA
I am CUDA thread (0, 0) in block (1, 0)
I am CUDA thread (1, 0) in block (1, 0)
I am CUDA thread (2, 0) in block (1, 0)
I am CUDA thread (3, 0) in block (1, 0)
I am CUDA thread (4, 0) in block (1, 0)
I am CUDA thread (5, 0) in block (1, 0)
<... Output omitted ...>

The nvcc also supports cross-compilation of CUDA C and C++ code to PowerPC 64-bit
Little-Endian (ppc64le).

For more information about the nvcc compilation process and options, see the NVIDIA CUDA
Compiler NVCC page of the CUDA Toolkit Documentation website.

CUDA libraries
Accompanying the CUDA Toolkit for Linux are the following mathematical utility and scientific
libraries that use the GPU to improve performance and scalability:

� cuBLAS: Basic Linear Algebra Subroutines
� cuFFT: Fast Fourier Transforms
� cuRAND: Random Number Generation
� cuSOLVER: Dense and Sparse Direct Linear Solvers and Eigen Solvers
� cuSPARSE: Sparse matrix routines
� Thrust: Parallel Algorithm and data structures

Note: The support for cross-compilation for POWER8 Little-Endian was introduced in
CUDA Toolkit 7.5.
Chapter 2. Compilation, execution, and application development 59

http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

Example 2-14 shows the use of the following cuBLAS API to calculate the dot product of two
vectors.

where A and B are vectors of conforming shape.

This algorithm uses IBM XLC++ (xlC) to generate the host code and compile with -lcublas
flag that links dynamically with the cuBLAS library.

Example 2-14 Sample code for CUDA C using cuBLAS library

1. #include<cublas_v2.h>
2. #include<cuda_runtime.h>
3. #include<cuda_runtime_api.h>
4. #include<stdlib.h>
5. #include<stdio.h>
6.
7. #define N 10000
8.
9. int main(int argc, char* argv[]) {
10. int const VEC_SIZE = N*sizeof(double);
11. double* h_vec_A = (double*) malloc(VEC_SIZE);
12. double* h_vec_B = (double*) malloc(VEC_SIZE);
13.
14. double *d_vec_A, *d_vec_B, result;
15. cublasStatus_t status;
16. cublasHandle_t handler;
17. cudaError_t error;
18. // Initialize with random numbers between 0-1
19. int i;
20. for(i=0; i<N; i++) {
21. h_vec_A[i] = (double) (rand() % 100000)/100000.0;
22. h_vec_B[i] = (double) (rand() % 100000)/100000.0;
23. }
24.cudaMalloc((void **)&d_vec_A, VEC_SIZE);
25. cudaMalloc((void **)&d_vec_B, VEC_SIZE);
26. cudaMemcpy(d_vec_A, h_vec_A, VEC_SIZE ,cudaMemcpyHostToDevice);
27. cudaMemcpy(d_vec_B, h_vec_B, VEC_SIZE ,cudaMemcpyHostToDevice);
28.
29. // Initialize cuBLAS
30. status = cublasCreate(&handler);
31. // Calculate DOT product
32. status = cublasDdot(handler, N , d_vec_A, 1, d_vec_B, 1, &result);
33. if(status != CUBLAS_STATUS_SUCCESS) {
34. printf("Program failed to calculate DOT product\n");
35. return EXIT_FAILURE;
36. }
37. printf("The DOT product is: %G\n", result);
38.
39. // Tear down cuBLAS
40. status = cublasDestroy(handler);
41. return EXIT_SUCCESS;
42.}

A B⋅ aibi

i 1=

N

=

A, a1 a2 … a, , , N() B; b1 b2 … bN, , ,()= =
60 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

The source code as shown in Example 2-14 on page 60 is built and run as shown in
Example 2-15.

Example 2-15 Building and running source code an cuBLAS sample code

$ make
Building file: ../main.c
Invoking: NVCC Compiler
/usr/local/cuda-8.0/bin/nvcc -I/usr/local/cuda-8.0/include/ -G -g -O0 -ccbin xlC
-Xcompiler -qtune=pwr8 -Xcompiler -qhot -Xcompiler -O3 -Xcompiler -qarch=pwr8
-gencode arch=compute_60,code=sm_60 -m64 -odir "." -M -o "main.d" "../main.c"

/usr/local/cuda-8.0/bin/nvcc -I/usr/local/cuda-8.0/include/ -G -g -O0 -ccbin xlC
-Xcompiler -qtune=pwr8 -Xcompiler -qhot -Xcompiler -O3 -Xcompiler -qarch=pwr8
--compile -m64 -x c -o "main.o" "../main.c"
Finished building: ../main.c

Building target: cudaBLAS
Invoking: NVCC Linker
/usr/local/cuda-8.0/bin/nvcc --cudart static -ccbin xlC
--relocatable-device-code=false -gencode arch=compute_60,code=compute_60 -gencode
arch=compute_60,code=sm_60 -m64 -link -o "cudaBLAS" ./main.o -lcublas
Finished building target: cudaBLAS

$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64/
$./cudaBLAS
The DOT product is: 2500.22

2.6.3 OpenACC

As an option that is provided by the OpenPower foundation, IBM worked with NVIDIA to
enable the use of PGI compilers in POWER8 systems. As with the IBM XL, this compiler also
can use most of the features that NVLINK technology provides to offload code to the Pascal
GPUs.

The offload through the PGI compiler is performed by the OpenACC model, which not only
was developed similar to OpenMP, but it was developed to ease the programming of
heterogeneous CPU/GPU hybrid software for programmers. By using simple clauses, such as
#pragma acc kernels{}, the programmer can indicate loops where parallelism might be
found, while the compiler creates CUDA kernels under the hood for the programmer.

In this section, we consider the integral of the following curve that leads to the value of pi, if
performed in the closed interval [0,1] as shown in Table 2-7 on page 36:

4
1 x2+
-------------- xd
0
1
 π 3 1416,≈=
Chapter 2. Compilation, execution, and application development 61

The simple addition of the #pragma acc kernels{} in line 29 of Example 2-16 resulted in a
significant performance increase.

Example 2-16 Parallel code for integration using openacc

1. #include <stdio.h>
2. #include <stdlib.h>
3. #include <stdint.h>
4. #include <time.h>
5. #include <sys/time.h>
6. #include <omp.h>
7.
8. int32_t timer(struct timeval *, struct timeval *, struct timeval *);
9.
10.int32_t main(int32_t argc, char* argv[])
11.{
12. if(argc!=4)
13. {
14. printf("No number of steps OR number of blocks OR number of

threads were provided\nAborting...\n");
15. return -1;
16. }
17.
18. uint32_t i, N, n_blocks, n_threads;
19. double x, pi, step, sum;
20. struct timeval start_princ, finish_princ, diff_princ;
21.
22. sum = 0.0;
23. N = atol(argv[1]);
24. n_blocks = atol(argv[2]);
25. n_threads = atol(argv[3]);
26. step = 1.0 / ((double) N);
27.
28. gettimeofday(&start_princ,NULL);
29. #pragma acc kernels
30. for(i=0; i<N; i++)
31. {
32. x = (i + 0.5) * step;
33. sum += 4.0 / (1.0 + x * x);
34. }
35. pi = step * sum * n_blocks * n_threads;
36. gettimeofday(&finish_princ,NULL);
37.
38. timer(&diff_princ, &finish_princ, &start_princ);
39. printf("PI: %.15f\nExecution Time = %ld.%06ld s\n", pi,

diff_princ.tv_sec, diff_princ.tv_usec);
40. fprintf(stderr,"%ld.%06ld\n", diff_princ.tv_sec, diff_princ.tv_usec);
41.
42. return 0;
43.}
44.
45.int32_t timer(struct timeval *result, struct timeval *t2, struct timeval *t1)
46.{
47. int32_t diff = (t2->tv_usec + 1000000 * t2->tv_sec) - (t1->tv_usec +

1000000 * t1->tv_sec);
48. result->tv_sec = diff / 1000000;
62 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

49. result->tv_usec = diff % 1000000;
50. return (diff<0);
51.}

Example 2-16 on page 62 is an excellent starting ground to parallelize software through
OpenACC. However, to achieve better performance, the programmer must fine-tune the
#pragma acc calls. Therefore, consider the effect of sharing the integral loop among multiple
blocks and threads as shown in Example 2-17.

Example 2-17 OpenACC parallelization in n_blocks with n_threads each

--- acc_pi_simple.c 2016-11-30 14:22:07.842632526 -0500
+++ acc_pi.c 2016-11-30 14:33:19.972673136 -0500
@@ -26,7 +26,7 @@ int32_t main(int32_t argc, char* argv[])
 step = 1.0 / ((double) N);

 gettimeofday(&start_princ,NULL);
- #pragma acc kernels
+ #pragma acc parallel loop reduction(+:sum) device_type(nvidia)
vector_length(n_threads) gang worker num_workers(n_blocks)
 for(i=0; i<N; i++)
 {
 x = (i + 0.5) * step;

In Example 2-17, we are dividing the for loop between blocks of several threads. Also, we
must add a reduction clause to add all individual computation between the blocks at the end
of the execution.

The compilation command for our configuration that uses a Tesla P100 is shown in
Example 2-18. The -acc tells the compiler to process the source recognizing #pragma acc
directives. At the same time, the -Minfo tells the compiler to share information about the
optimization during the compilation process. Also, all stands for
accel,inline,ipa,loop,lre,mp,opt,par,unified,vect and the intensity asks for the
computing loop information.

Example 2-18 OpenACC compilation example

$ pgcc -acc -Minfo=all,intensity -ta=tesla:cc60 -o acc_pi acc_pi.c -lm
main:
 29, Accelerator kernel generated
 Generating Tesla code
 29, Generating reduction(+:sum)
 30, #pragma acc loop gang, vector(n_threads), worker(n_blocks) blockIdx.x
threadIdx.x threadIdx.y */

In addition, the -ta flag chooses the target accelerator, which can be set to the host CPU
through the option multicore, and therefore run in our 192 cores. However, in our example, it
is set to our Tesla P100 GPU that has compute capacity 60. Much information is available by
using the pgaccelinfo command. To find the correct cc gpu flag, run the command that is
shown in Example 2-19.

Example 2-19 Finding more information about the NVIDIA board

0$ pgaccelinfo

CUDA Driver Version: 8000
Chapter 2. Compilation, execution, and application development 63

NVRM version: NVIDIA UNIX ppc64le Kernel Module 361.103 Tue Oct
25 12:57:47 PDT 2016

Device Number: 0
Device Name: Tesla P100-SXM2-16GB
Device Revision Number: 6.0
Global Memory Size: 17071669248
Number of Multiprocessors: 56
Concurrent Copy and Execution: Yes
Total Constant Memory: 65536
Total Shared Memory per Block: 49152
Registers per Block: 65536
Warp Size: 32
Maximum Threads per Block: 1024
Maximum Block Dimensions: 1024, 1024, 64
Maximum Grid Dimensions: 2147483647 x 65535 x 65535
...
...
... Output Omited

The command that is shown in Example 2-20 also can be used.

Example 2-20 Finding the compute capacity of your board

0$ pgaccelinfo | grep -m 1 "PGI Compiler Option"
PGI Compiler Option: -ta=tesla:cc60

For more information about running OpenACC parallelization and the performance that is
achieved in Example 2-17 on page 63, see 3.2.2, “OpenACC execution and scalability” on
page 101.

For more information about how to use and install openacc, see the following resources:

� Resources page of the OpenACC website
� OpenACC Courses page of the NVIDIA Accelerated Computing website.

2.6.4 IBM XL C/C++ and Fortran offloading

Another much awaited feature on the IBM Power System S822LC is the use of OpenMP
directives to perform GPU offloading through IBM XL C/C++ programs. The combination of
the POWER processors with the NVIDIA GPUs provide a robust platform for heterogeneous,
high-performance computing that can run several scalable technical computing workloads
efficiently. The computational capability is built on top of massively parallel and multithreaded
cores within the NVIDIA GPUs and the IBM POWER processors.

For more information about the power of this feature, see Optimization and Programming
Guide for Little Endian Distributions.

IBM XL Fortran and IBM XL C/C++ V15.1.5 partially support the OpenMP Application
Program Interface Version 4.5 specification. Compute-intensive parts of an application and
associated data can be offloaded to the NVIDIA GPUs by using the supported OpenMP
preprocessor directives device constructs to control parallel processing.

Note: The pragma calls take effect only when parallelization is enabled with the -qsmp
compiler option. Also, the compilation also must include the -qoffload to offload.
64 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.openacc.org/sites/default/files/OpenACC_Toolkit_Users_Guide.pdf
http://www.openacc.org/sites/default/files/OpenACC_Toolkit_Users_Guide.pdf
https://developer.nvidia.com/openacc-courses
https://developer.nvidia.com/openacc-courses
http://www-01.ibm.com/support/docview.wss?uid=swg27048883&aid=11
http://www-01.ibm.com/support/docview.wss?uid=swg27048883&aid=11
https://developer.nvidia.com/openacc-courses
http://www.openacc.org/resources
http://www.openacc.org/resources

For example, you can use the omp target directive to define a target region, which is a block of
computation that operates within a distinct data environment and is intended to be offloaded
into a parallel computation device during execution. Table 2-19 lists some of the supported
OpenMP 4.5 pragma clauses.

Table 2-19 Supported OpenMP 4.5 pragma clauses

XL Fortran XL C/C++ Description

TARGET DATA omp target data The omp target data directive maps
variables to a device data
environment, and defines the lexical
scope of the data environment that
is created. The omp target data
directive can reduce data copies to
and from the floading device when
multiple target regions are using the
same data.

TARGET ENTER DATA omp target enter data The omp target enter data directive
maps variables to a device data
environment.
The omp target enter data directive
can reduce data copies to and from
the offloading device when multiple
target regions are using the same
data, and when the lexical scope
requirement of the omp target
dataconstruct is not appropriate for
the application.

TARGET EXIT DATA omp target exit data The omp target exit data directive
unmaps variables from a device
data environment. The omp target
exit data directive can limit the
amount of device memory when you
use the omp target enter data
construct to map items to the device
data environment.

TARGET omp target The omp target directive instructs
the compiler to generate a target
task; that is, to map variables to a
device data environment and to run
the enclosed block of code on that
device. Use the omp target directive
to define a target region, which is a
block of computation that operates
within a distinct data environment
and is intended to be offloaded onto
a parallel computation device during
execution.

TARGET UPDATE omp target update The omp target update directive
makes the list items in the device
data environment consistent with
the original list items by copying
data between the host and the
device. The direction of data copying
is specified by motion-type.
Chapter 2. Compilation, execution, and application development 65

More information about all supported XL OpenMP clauses, see the Compiler Reference for
Little Endian Distributors document.

To test the scalability of this feature, the following well-known dgemm example is used:

where, alpha and beta are real scalar values, and A, B, and C are matrixes of conforming
shape.

Example 2-21 presents a column major order implementation of the dgemm algorithm. This
code was created to present the compilation and execution of a real example of an algorithm
by using XL C offloading on NVIDIA GPUs. In addition, it aimed to present a comparison
between a hand implementation against the advantages of using the vast API of PESSL,
such as the implementations that are described in 2.4.2, “Using GPUs with Parallel ESSL” on
page 43. Finally, this implementation was designed to ease the execution of a scalability
curve, which were created for a broader perspective of the performance gain that is achieved
by offloading the code to the GPU.

Example 2-21 shows how to compile the source code.

Example 2-21 How to compile a program that uses XL offloading

$ /opt/ibm/xlC/13.1.5/bin/cc_r -O3 -Wall -o dgemm_xlc dgemm_xlc.c -qsmp=omp
-qoffload -mcpu=pwr8 -mtune=pwr8

DECLARE TARGET omp declare target The omp declare target directive
specifies that variables and
functions are mapped to a device so
that these variables and functions
can be accessed or run on the
device.

TEAMS omp teams The omp teams directive creates a
collection of thread teams. The
master thread of each team runs the
teams.

DISTRIBUTE omp distribute The omp distribute parallel for
directive runs a loop by using
multiple teams where each team
typically consists of several threads.
The loop iterations are distributed
across the teams in chunks in round
robin fashion.

DISTRIBUTE PARALLEL DO omp distribute parallel for The omp distribute parallel for
directive runs a loop by using
multiple teams where each team
typically consists of several threads.
The loop iterations are distributed
across the teams in chunks in
round-robin fashion

XL Fortran XL C/C++ Description (Fort.)

C α A B⋅ β C+=
66 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www-01.ibm.com/support/docview.wss?uid=swg27048883&aid=7
http://www-01.ibm.com/support/docview.wss?uid=swg27048883&aid=7

Depending on the computation logic, some algorithms can perform better when column major
order is used than line major order, and vice versa. This issue usually occurs because of the
increase of the cache hit ratio, but one of these configurations can mask a false sharing
situation.

Although Example 2-22 dynamically allocates the matrixes and calculates the indexes of the
matrix throughout all the code, the ESSLs in Example 2-5 on page 38 performed this function
on line 60 by selecting only one parameter at the dgemm function. Therefore, it is important to
study and use the highly optimized ESSL API as much as possible.

Example 2-22 also shows the syntax of copying dynamically allocated vectors to the GPU
(normal vector uses the name of the variable). The data copy is performed on #pragma omp
target call on line 61 of Example 2-22, where we use the map() function to copy the A, B, and
C into the GPU, and the tmp out of the GPU at the end of the calculation. This process avoids
multiple copies at the end of each iteration of the outer for loop.

We then call the #pragma omp teams that are nested with the thead_limit to run our code in
warps, as a CUDA code can. Finally, we use the #pragma omp distribute to share the code
according to our blocks of a specific number of threads.

Example 2-22 Column major order implementation of dgemm to test scalability of XL C offloading

1. #include <stdio.h>
2. #include <stdlib.h>
3. #include <string.h>
4. #include <time.h>
5. #include <sys/time.h>
6. #include <omp.h>
7.
8. #define interval 0.5
9. #define verbose 0
10.
11.double float_rand();
12.void timer(struct timeval *, struct timeval *, struct timeval *);
13.void print_mat(double *mat, long N);
14.
15.int main(int argc, char* argv[])
16.{
17. if(argc!=4)
18. {
19. printf("No matrix dimension OR number of blocks OR number of

threads were provided\nAborting...\n");
20. return -1;
21. }
22.
23. struct timeval diff, start, end;
24. long i, j, k, N, n_blocks, n_threads;
25. double *a, *b, *c, *tmp, alpha, beta, sum;
26. double flop, exec_time;
27.
28. srand((unsigned int)time(NULL));
29.
30. N = atol(argv[1]);
31. n_blocks = atol(argv[2]);
32. n_threads = atol(argv[3]);
33.
Chapter 2. Compilation, execution, and application development 67

34. alpha = ((double)1.3);
35. beta = ((double)2.4);
36. flop = (double)(N*N*(2*(N-1)));
37.
38. a = (double*) malloc(N * N * sizeof(double));
39. b = (double*) malloc(N * N * sizeof(double));
40. c = (double*) malloc(N * N * sizeof(double));
41. tmp = (double*) malloc(N * N * sizeof(double));
42.
43. for(i=0;i<N;i++)
44. {
45. for(j=0;j<N;j++)
46. {
47. a[(i) * N + (j)] = float_rand();
48. b[(i) * N + (j)] = float_rand();
49. c[(i) * N + (j)] = float_rand();
50. }
51. }
52.
53. if(verbose)
54. {
55. printf("A\n"); print_mat(a,N);
56. printf("\nB\n"); print_mat(b,N);
57. printf("\nC\n"); print_mat(c,N);
58. }
59.
60. gettimeofday(&start,NULL);
61. #pragma omp target map(to: a[0:N*N], b[0:N*N], c[0:N*N])

map(from: tmp[0:N*N])
62. #pragma omp teams num_teams(n_blocks) thread_limit(n_threads)
63. #pragma omp distribute parallel for private(sum)
64. for(i=0;i<N;i++)
65. {
66. for(j=0;j<N;j++)
67. {
68. sum = 0.0;
69. for(k=0;k<N;k++)
70. {
71. sum += a[(i)*N + (k)] * b[(k)*N + (j)];
72. }
73. tmp[(i)*N + (j)] = alpha * sum + beta * c[(i)*N

+ (j)];
74. }
75. }
76. gettimeofday(&end,NULL);
77.
78. memcpy(c, tmp, N * N * sizeof(double));
79.
80. if(verbose)
81. {
82. printf("\nC = alpha * A * B + beta * C\n");
83. print_mat(c,N);
84. }
85.
86. timer(&diff, &end, &start);
68 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

87. exec_time = diff.tv_sec + 0.000001 * diff.tv_usec;
88. printf("\nExecution time = %lf s, %lf MFlops\n\n", exec_time, (flop /

exec_time));
89. fprintf(stderr, "%.6lf,%.6lf\n", exec_time, (flop / exec_time));
90.
91. free(a); free(b); free(c);
92.
93. return 0;
94.}
95.
96.double float_rand()
97.{
98. double a = ((double)-1.0) * interval;
99. double b = interval;
100. return b + ((double)rand() / (RAND_MAX / (a-b))) ;
101.}
102.
103.void timer(struct timeval *result, struct timeval *t2, struct timeval *t1)
104.{
105. long diff = (t2->tv_usec + 1000000 * t2->tv_sec) - (t1->tv_usec +

1000000 * t1->tv_sec);
106. result->tv_sec = diff / 1000000;
107. result->tv_usec = diff % 1000000;
108.}
109.
110.void print_mat(double *mat, long N)
111.{
112. long i, j;
113.
114. for(i=0;i<N;i++)
115. {
116. for(j=0;j<N;j++)
117. {
118. (mat[(i)*N + (j)] >= 0.0) ? printf(" %f ",mat[(i)*N

+ (j)]) : printf("%f ",mat[(i)*N + (j)]);
119. }
120. printf("\n");
121. }
122.}

For more information about running and the performance that is achieved in Example 2-22 on
page 67, see 3.2.3, “XL Offload execution and scalability” on page 101.

For more information about all the features of XL offloading, see the Product documentation
for XL C/C++ for Linux, V13.1.5, for little endian distributions page of the IBM Support
website.

For more information about OpenMP examples, see the OpenMP 4.5 documentation.
Chapter 2. Compilation, execution, and application development 69

http://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf
http://www-01.ibm.com/support/docview.wss?uid=swg27048883
http://www-01.ibm.com/support/docview.wss?uid=swg27048883
http://www-01.ibm.com/support/docview.wss?uid=swg27048883
http://www-01.ibm.com/support/docview.wss?uid=swg27048883

2.6.5 MPI programs with IBM Parallel Environment v2.3

The MPI development and runtime environment that is provided by the IBM PE version 2.3
includes the following general characteristics:

� Provides the implementation of MPI version 3.0 standard, based on the open source
MPICH project.

� The MPI library uses PAMI protocol as a common transport layer.

� Supports MPI application in C, C++, and Fortran.

� Supports 64-bit applications only.

� Supports GNU and IBM XL compilers.

� MPI operations can be carried out on main or user-space threads.

� The I/O component (also known as MPI-IO) is an implementation of ROMIO that is
provided by MPICH 3.1.2.

� Provides a CUDA-aware MPI implementation.

� Uses a shared memory mechanism for message transport between tasks on the same
compute node. In contrast, the User Space (US) communication subsystem, which
provides direct access to a high-performance communication network by way of an
InfiniBand adapter, is used for internode tasks.

� Allows message stripping, failover, and recovery on multiple or single (with some
limitations) network configurations.

� Allows for dynamic process management.

This section introduces some MPI implementation aspects of IBM PE Runtime and general
guidance on how to build parallel applications. For more information, see Parallel
Environment Runtime Edition for Linux: MPI Programming Guide.

MPI API
The MPI implementation of PE is based on MPICH. For information about the MPI API, see
the MPICH website.

Provided compilers
The compilers provide a set of compilation scripts that are used to build parallel applications
that support GNU and IBM XL family compilers for C, C++, and Fortran.

Note: IBM PE is being deprecated in favor IBM Spectrum MPI, which is a lighter and
high-performance implementation of the MPI (Message Passing Interface) Standard.

For more information, see 2.6.9, “MPI programs with IBM Spectrum MPI” on page 81.

The following sections remain in this book for completeness and migration purposes.
These sections will be removed in future releases of this publication:

� 2.6.5, “MPI programs with IBM Parallel Environment v2.3” on page 70
� 2.6.6, “Hybrid MPI and CUDA programs with IBM Parallel Environment” on page 75
� 2.6.7, “OpenSHMEM programs with the IBM Parallel Environment” on page 79
� 2.6.8, “Parallel Active Messaging Interface programs” on page 80
70 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.mpich.org
http://www.mpich.org
https://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.pe.v2r3.pe400.doc/am106_about.htm
https://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.pe.v2r3.pe400.doc/am106_about.htm

C, C++, and Fortran applications are built, by using mpcc, mpCC, and mpfort compilation
scripts, respectively, that are linked with the threaded version of MPI and poe libraries by
default. They also apply some instrumentation on binary file so that poe is indirectly started to
manage the parallel execution.

The mpicc, mpicxx, mpif77, and mpif90 compilation scripts for C, C++, Fortran77, and
Fortran90, respectively, are designed to build MPICH-based parallel applications. A program
that is compiled with those scripts can be run through poe.

Example 2-23 shows the mpicc command compiling of an MPI C application by using the
GNU GCC compiler.

Example 2-23 IBM PE Runtime mpicc command to compile an MPI C program

$ export PATH=/opt/ibmhpc/pecurrent/base/bin:$PATH
$ mpicc -compiler gnu -O3 -mcpu=power8 -mtune=power8 -o myApp main.c

Use the -show option to display the command that is run to compile the application. In
Example 2-23, the mpicc -show command produces the following output:

$ mpicc -show -compiler gnu -O3 -mcpu=power8 -mtune=power8 -o myApp main.c
/usr/bin/gcc -Xlinker --no-as-needed -O3 -mcpu=power8 -mtune=power8 -o myApp
main.c -m64 -D__64BIT__ -Xlinker --allow-shlib-undefined -Xlinker
--enable-new-dtags -Xlinker -rpath -Xlinker /opt/ibmhpc/pecurrent/mpich/gnu/lib64
-I/opt/ibmhpc/pecurrent/mpich/gnu/include64 -I/opt/ibmhpc/pecurrent/base/include
-L/opt/ibmhpc/pecurrent/mpich/gnu/lib64 -lmpi

All of these compilation scripts use the XL compilers, unless the MP_COMPILER variable or
-compiler option is set, which instructs them to use another compiler. You can use gnu or xl
option values to evoke GNU or XL compilers. For third-party compilers, use the fully qualified
path (for example, MP_COMPILER=/opt/at9.0/bin/gcc).

Details of MPI-IO implementation
The ROMIO implementation of IBM PE Runtime is configured to use the IBM Spectrum Scale
file system, which delivers high-performance I/O operations. Some environment variables are
also introduced to allow users to control the behavior of some operations, such as collective
aggregations.

The file system detection mechanism uses system calls, unless the parallel file system is set
with the ROMIO_FSTYPE_FORCE environment variable. Many changes in the default configuration
of MPI-IO by passing hints to ROMIO are allowed, which sets them in the ROMIO_HINTS
environment variable.

Local rank property
The Parallel Environment provided MPI implementation includes a mechanism to determine
the rank of a task among others tasks that are running in the same machine, which is also
known as the task local rank.

Note: The compilation scripts that are provided by the latest version of the IBM PE
Runtime are installed in the /opt/ibmhpc/pecurrent/base/bin directory.

Note: Although the configuration also supports NFS and POSIX compliance file systems,
some limitations cant apply.
Chapter 2. Compilation, execution, and application development 71

The read-only MP_COMM_WORLD_LOCAL_RANK variable can be used to obtain the local
rank. Each task reads its local attributed rank and is made available by the runtime
environment.

Example 2-24 shows an MPI C program that reads the MP_COMM_WORLD_LOCAL_RANK
and prints its value to standard output.

Example 2-24 Simple MPI C program that prints task local rank

1. #include<mpi.h>
2. #include<stdio.h>
3. #include<stdlib.h>
4. #include <unistd.h>
5.
6. int main(int argc, char* argv[])
7. {
8. int world_rank, world_size, local_rank;
9. char hostname[255];
10.
11. MPI_Init(&argc, &argv);
12.
13. gethostname(hostname, 255);
14. MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
15. MPI_Comm_size(MPI_COMM_WORLD, &world_size);
16. local_rank = atoi(getenv("MP_COMM_WORLD_LOCAL_RANK"));
17. printf("Task %d: running on node %s and local rank %d\n", world_rank,

hostname, local_rank);
18.
19. MPI_Finalize();
20. return EXIT_SUCCESS;
21.}

The output of the program in Example 2-24 is shown in Example 2-25.

Example 2-25 Show output of simple MPI C program that prints the local rank

$ mpcc main.c
$ MP_RESD=poe MP_PROCS=5 ./a.out
Task 0: running on node xcat-mn.xcat-cluster and local rank 0
Task 1: running on node xcat-mn.xcat-cluster and local rank 1
Task 4: running on node xcat-mn.xcat-cluster and local rank 4
Task 2: running on node xcat-mn.xcat-cluster and local rank 2
Task 3: running on node xcat-mn.xcat-cluster and local rank 3

Switch MPI configurations with environment modules
The process of compiling and running a parallel application with PE requires setting several
environment variables. Some predefined profiles that use environment modules3 to change
the system’s variables are available to ease this task. As of PE 2.3, the following development
profiles for MPI applications are provided:

� perf: Compile the MPI application with XL and set to run in development mode with
minimal error checking.

� debug: Compile the MPI application with XL and set to run in development mode with the
debug versions of the libraries.

3 Learn about Linux environment modules at the project website: http://modules.sourceforge.net
72 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://modules.sourceforge.net

� trace: Compile the MPI application with XL and set to run in development mode with the
trace libraries.

The environment module command (module) can be installed in the system. For RHEL 7.3, it
can be installed with the following commands:

yum install environment-modules

After the module command is installed in the system, you can list all available modules, add
the modules that are provided by PE, and load modules as shown in Example 2-26.

Example 2-26 Show the use of modules to set environment to build and run MPI applications

$ module avail

--
/usr/share/Modules/modulefiles
--
dot module-git module-info modules null use.own
$ module use -a /opt/ibmhpc/pecurrent/base/module
$ echo $MODULEPATH
/usr/share/Modules/modulefiles:/etc/modulefiles:/opt/ibmhpc/pecurrent/base/module
$ module avail

--
/usr/share/Modules/modulefiles
--
dot module-git module-info modules null use.own

--
/opt/ibmhpc/pecurrent/base/module

pe2300.xl.debug pe2300.xl.perf pe2300.xl.trace
$ module whatis pe2300.xl.debug
pe2300.xl.debug : Adds PE environment variables for xl compiler and debug
develop mode to user environment.

$ module whatis pe2300.xl.perf
pe2300.xl.perf : Adds PE environment variables for xl compiler and
performance develop mode to user environment.

$ module whatis pe2300.xl.trace
pe2300.xl.trace : Adds PE environment variables for xl compiler and trace
develop mode to user environment.

$ env | grep MP
$ module load pe2300.xl.perf
 Adds these PE settings into your environment:

 MP_COMPILER=xl
 MP_EUIDEVELOP=min
 MP_MPILIB=mpich
 MP_MSG_API=mpi
 MP_CONFIG=2300
$ env | grep MP
MP_EUIDEVELOP=min
MP_CONFIG=2300
Chapter 2. Compilation, execution, and application development 73

MP_MSG_API=mpi
MP_MPILIB=mpich
MP_COMPILER=xl
$ module load pe2300.xl.debug
 Adds these PE settings into your environment:

 MP_COMPILER=xl
 MP_EUIDEVELOP=debug
 MP_MPILIB=mpich
 MP_MSG_API=mpi
 MP_CONFIG=2300
$ env | grep MP
MP_EUIDEVELOP=debug
MP_CONFIG=2300
MP_MSG_API=mpi
MP_MPILIB=mpich
MP_COMPILER=xl

Simulating different SMT modes
The example cluster contains two nodes (S822LC), each of which has two sockets. One
NUMA node corresponds to one socket and has 10 physical POWER8 cores inside it. The
systems are configured with SMT-8, which means that a physical core can split a job between
eight logical CPUs (threads). The structure of the S822LC is shown in Figure 2-4.

Figure 2-4 Structure of node in cluster
74 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

PE MPI provides run options or environment variables, which helps to simulate runs with
different SMT modes. The following cases describe two ways when a job uses only 1 logical
CPU from each POWER8 core (SMT-1 mode), and fully uses all 160 logical CPUs by using
Example 2-15 on page 61 with Parallel ESSL calls:

� To configure the job to use only one logical CPU per POWER8 core, the following run
command can be used:

MP_TASK_AFFINITY=core:1 MP_RESD=poe MP_PROCS=40 ./test_pdgemm

MP_TASK_AFFINITY=core:1 says to PE MPI that each MPI task can use only one POWER8
core. Overall, the full cluster has 40 POWER8 cores (each node contains 20 cores);
therefore, a maximum of 40 MPI (MP_PROCS=40) tasks can be used for such run.

Another possible solution to simulate SMT-1 mode is to take 20 MPI tasks with two
POWER8 cores for each of them by using the following run command:

MP_TASK_AFFINITY=core:2 MP_RESD=poe MP_PROCS=20 ./test_pdgemm

� The following run command shows how to use the cluster and all 160 logical CPUs per
node:

MP_TASK_AFFINITY=cpu:16 MP_RESD=poe MP_PROCS=20 ./test_pdgemm

MP_TASK_AFFINITY=core:1 means for PE MPI that each MPI task can use only 16 logical
CPUs. Each node in the cluster contains 160 logical CPUs, so 10 MPI tasks per node and
20 for the overall cluster can be used in this run.

If you want to change the CPU affinity variable and still use all logical CPUs, the number of
MPI tasks must be changed respectively. The following commands describe the
alternative calls:

MP_TASK_AFFINITY=cpu:160 MP_RESD=poe MP_PROCS=2 ./test_pdgemm
MP_TASK_AFFINITY=cpu:8 MP_RESD=poe MP_PROCS=40 ./test_pdgemm
MP_TASK_AFFINITY=cpu:2 MP_RESD=poe MP_PROCS=160 ./test_pdgemm

2.6.6 Hybrid MPI and CUDA programs with IBM Parallel Environment

The IBM PE compilers and runtime environment support building and running hybrid of MPI
and CUDA programs.

Building the program
The common case is to organize sources on separate files for MPI and CUDA codes, and use
different compilers to build the objects and then link them by using the MPI compiler.
Example 2-27 shows this procedure.

Example 2-27 Show how hybrid MPI and CUDA programs can be built

$ mpCC -o helloMPICuda_mpi.o -c helloMPICuda.cpp
$ nvcc -ccbin g++ -m64 -gencode arch=compute_37,code=sm_37 -o helloMPICuda.o -c
helloMPICuda.cu
$ mpCC -o helloMPICuda helloMPICuda_mpi.o helloMPICuda.o
-L/usr/local/cuda-7.5/lib64 -lcudart

The MPI source is built by using the mpCC script, whereas the nvcc compiler is used for the
CUDA code. Finally, the object files are linked into the executable file, along with the CUDA
runtime library. Implicitly, mpCC links the executable file to libmpi (MPI), libpami (PAMI), and
libpoe (POE).
Chapter 2. Compilation, execution, and application development 75

Source files that contain MPI and CUDA code mixed (often called spaghetti programming
style) can be compiled, although it is not recognized as a good programming practice. In this
case, you can compile it invoking the nvcc (CUDA C compiler) and setting the MPI library and
the headers as shown in the following example:

$ nvcc -I/opt/ibmhpc/pecurrent/mpich/gnu/include64/
-L/opt/ibmhpc/pecurrent/mpich/gnu/lib64/ -L/opt/ibmhpc/pecurrent/base/gnu/lib64/
-lmpi -lpami main.cu

CUDA-aware MPI support
The CUDA-aware MPI feature of PE allows direct access of tasks to the GPU memory’s
buffers on operations of message passing, which can improve the application performance
significantly.

The CUDA development model can be generalized with following steps:

1. Allocate data on the host (CPU) memory.
2. Allocate data on the device (GPU) memory.
3. Move the data from host to device memory.
4. Perform on that data some computation (kernel) on device.
5. Move processed data from device back to the host memory.

In a context of send/receive communication and without the CUDA-aware MPI capability, the
tasks cannot access the GPU memory. Therefore, Step 5 is required because the data must
be on the host memory before it is sent. However, with CUDA-aware MPI, the task accesses
the portion of memory that is allocated in Step 2, which means that data cannot be staged
into host memory (Step 5 is optional).

The code that is shown in Example 2-28 shows how the CUDA-aware feature can be used
within a hybrid of CUDA and MPI programs. It is a simple MPI program that is meant to run
two jobs where task 0 initialize an array, increment its values by one using the GPU
computation, then sends the result to task 1. In line 56, the call to the MPI_Send function
uses the device buffer (allocated on line 40) directly.

Example 2-28 Simple CUDA-aware MPI program

1 #include<cuda_runtime.h>
2 #include<mpi.h>
3 #include<stdio.h>
4 #include<stdlib.h>
5 #include<assert.h>
6
7 __global__ void vecIncKernel(int* vec, int size) {
8 int tid = blockDim.x * blockIdx.x + threadIdx.x;
9 if(tid < size) {
10 vec[tid] += 1;
11 }
12 }
13

Note: The CUDA-aware MPI API was introduced in IBM Parallel Environment version 2.3.

Note: By default, CUDA-aware MPI is disabled on IBM PE run time. That behavior can be
changed by exporting the MP_CUDA_AWARE environment variable with yes (enable) or
no (disable).
76 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

14 #define ARRAY_ELEM 1024
15 #define ARRAY_ELEM_INIT 555
16
17 int main(int argc, char* argv[]) {
18 int taskid, numtasks, tag=0;
19 MPI_Status status;
20 int array_size = sizeof(int) * ARRAY_ELEM;
21 int threadsPerBlock = 32;
22 int blockSize = ceil(ARRAY_ELEM/threadsPerBlock);
23
24 MPI_Init(&argc, &argv);
25 MPI_Comm_rank(MPI_COMM_WORLD, &taskid);
26 MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
27
28 if(numtasks != 2) {
29 printf("This program must run only 2 tasks\n");
30 }
31 /*
32 * Task 0: initialize an array, increment its values by 1,
33 * and send it to Task 1.
34 */
35 if(taskid == 0) {
36 int *vSend = (int*) malloc(array_size);
37 for(int i=0; i < ARRAY_ELEM; i++)
38 vSend[i]=ARRAY_ELEM_INIT;
39 int *vDev;
40 if(cudaMalloc((void **)&vDev, array_size) == cudaSuccess) {
41 cudaMemcpy(vDev,vSend, array_size,cudaMemcpyHostToDevice);
42 vecIncKernel<<< blockSize, threadsPerBlock>>>(vDev, ARRAY_ELEM);
43 cudaDeviceSynchronize();
44 } else {
45 printf("Failed to allocate memory on GPU device\n");
46 MPI_Abort(MPI_COMM_WORLD, MPI_ERR_OTHER);
47 exit(0);
48 }
49 if(strcmp(getenv("MP_CUDA_AWARE"),"yes") != 0) {
50 printf("Cuda-aware MPI is disabled, MPI_Send will fail.\n");
51 }
52 /*
53 * CUDA-AWARE MPI Send: using the buffer allocated in GPU device.
54 * Do not need to transfer data back to host memory.
55 */
56 MPI_Send(vDev, ARRAY_ELEM, MPI_INT, 1, tag, MPI_COMM_WORLD);
57 } else {
58 /*
59 * Task 1: receive array from Task 0 and verify its values
60 * are incremented by 1.
61 */
62 int *vRecv = (int*) malloc(array_size);
63 MPI_Recv(vRecv, ARRAY_ELEM, MPI_INT, 0, tag, MPI_COMM_WORLD, &status);
64 int expected = ARRAY_ELEM_INIT+1;
65 for(int i=0; i < ARRAY_ELEM_INIT; i++) {
66 assert(vRecv[i]==expected);
67 }
68 }
Chapter 2. Compilation, execution, and application development 77

69
70 MPI_Finalize();
71 return 0;
72 }

The program that is shown in Example 2-28 on page 76 was compiled and run twice, as
shown in Example 2-29. The first run enables the CUDA-aware MPI (see the line starting with
MP_CUDA_AWARE=yes). Then, it runs with the feature disabled (the line starting with
MP_CUDA_AWARE=no), which forces it to exit with a segmentation fault. In this situation, a
remediation can be implemented that consists of copying the buffer back to the host memory
and using it in the MPI message pass call.

Example 2-29 Compiling and running the simple CUDA-aware MPI program

$
LD_LIBRARY_PATH=/opt/ibmhpc/pecurrent/mpich/gnu/lib64/:/opt/ibmhpc/pecurrent/base/
gnu/lib64/:$LD_LIBRARY_PATH
$ nvcc -I/opt/ibmhpc/pecurrent/mpich/gnu/include64/
-L/opt/ibmhpc/pecurrent/mpich/gnu/lib64/ -L/opt/ibmhpc/pecurrent/base/gnu/lib64/
-lmpi -lpami main.cu
$ MP_CUDA_AWARE=yes MP_RESD=poe MP_PROCS=2 poe ./a.out
$ MP_CUDA_AWARE=no MP_RESD=poe MP_PROCS=2 poe ./a.out
 5 Cuda-aware MPI is disabled, MPI_Send will fail.
 6 ERROR: 0031-250 task 0: Segmentation fault

As of PE 2.3, the CUDA-aware MPI is implemented on the following features:

� All two-sided (point-to-point) communication (blocking and non-blocking and intra- and
inter-communicator)

� All blocking intra-communicator collectives

However, the following features are not supported on the context of CUDA-aware MPI:

� One-sided communications
� One-sided synchronization calls
� Fabric Collective Accelerator (FCA)
� Non-blocking collective API calls
� Inter-communicator collective API
� The collective selection with the pami_tune command

Using MPI local rank to balance the use of GPU devices
A policy to grant shared access and load balance to GPU device among local tasks (running
on same compute node) can be implemented by using the local rank feature that is available
in the PE MPI. For example, one algorithm can limit the number of tasks that use GPUs to
avoid oversubscription.

For more information about the PE local rank, see 2.6.5, “MPI programs with IBM Parallel
Environment v2.3” on page 70.

Note: At the time of this writing, the NVIDIA GPUDirect technology is not supported on
IBM Power Systems. However, the CUDA-aware MPI API of IBM PE implement
transparent means to send/receive data to and from the GPU buffers.
78 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Starting concurrent CUDA kernels from multiple tasks
There are some considerations about shared use of GPUs with multiple MPI tasks. For more
information, see 4.5.2, “CUDA Multi-Process Service” on page 156.

2.6.7 OpenSHMEM programs with the IBM Parallel Environment

The OpenSHMEM4 provides a specification API and reference implementation for the
Partitioned Global Address Space (PGAS) parallel programming model, which abstracts the
concept of global shared memory on processes that are distributed across different address
spaces. Its implementation involves the use of a communication library that often uses
Remote Direct Memory Access (RDMA) techniques.

PE provides an OpenSHMEM runtime library (libshmem.so), compiler scripts, and tools that
enable developing and running OpenSHEM programs. The PAMI library is used for
communication among processing elements of the PGAS program, and it can use the RDMA
capabilities of the InfiniBand interconnect to improve performance.

As of PE version 2.3, support is available only for parallel programs that are written in C and
C++. Its implementation is based on the OpenSHEM API specification version 1.25 with some
minor deviations. For more information about supported and unsupported routines, see the
OpenSHMEM API support page of the IBM Knowledge Center website.

The OpenSHMEM tools are installed in the /opt/ibmhpc/pecurrent/base/bin directory. The
compile scripts for C and C++ are, oshcc and oshCC, respectively. The oshrun script runs
programs, although poe also can be used.

Example 2-30 shows the OpenSHMEM program. The API can be used only after a shared
memory section is initialized (line 8). A symmetric memory area (the basket variable that is
declared on line 6) is written by all processing elements (call to shmem_int_put on line 14) on
PE zero. Then, all of the elements read the variable from PE zero (call to shmem_int_get on
line 15) to print its value.

Example 2-30 Simple OpenSHMEM program

1 #include<shmem.h>
2 #include<stdio.h>
3 #include<stdlib.h>
4
5 int main() {
6 static int basket; // Global shared (symetric) variable
7 int cents_p, cents_g; // Processing element's local variable
8 shmem_init(); // Initialize SHMEM
9 int my_pe = shmem_my_pe(); // Processing element's number
10 //printf("Hello, I am PE %d\n", my_pe);
11 cents_p = rand()%10;
12 shmem_barrier_all();
13 if(my_pe != 0)
14 shmem_int_put(&basket, ¢s_p, 1, 0);
15 shmem_int_get(¢s_g, &basket, 1, 0);
16 printf("Hello, I am PE %d. I put %d cents but I get %d\n", my_pe, cents_p,
cents_g);
17 shmem_finalize(); // Finalize SHMEM
18
4 Learn more about OpenSHMEM at http://openshmem.org
5 The OpenSHEM specification version 1.2 document is available at this website:
http://openshmem.org/site/sites/default/site_files/openshmem-specification-1.2.pdf
Chapter 2. Compilation, execution, and application development 79

http://openshmem.org
http://openshmem.org/site/sites/default/site_files/openshmem-specification-1.2.pdf
http://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.pe.v2r3.pe100.doc/am102_openshmem.htm

19 return 0;
20 }

The source code that is shown in Example 2-30 on page 79 can be compiled by using the
oshcc script, as shown in Example 2-31. It is a common practice that the name of an
OpenSHMEM executable file includes the suffix .x.

Example 2-31 Show how to compile an OpenSHMEM program

$ oshcc -O3 hellosh.c -o hellosh.x
$ ls
hellosh.c hellosh.x

By default, oshcc (or oshCC) compiles the application with xlc (or xlC), unless it is not installed
into the system or the MP_COMPILER environment variable is set to use gcc (or g++).

The program is started by using the oshrun script. Alternatively, it can evoke poe directly. For
more information about running OpenSHMEM programs, see 3.3.3, “Running OpenSHMEM
programs” on page 111.

2.6.8 Parallel Active Messaging Interface programs

Parallel Active Messaging Interface (PAMI) is a low-level protocol that is the foundation of
communications on MPI and OpenSHMEM implementations of the IBM PE run time. It
provides an API for programs to access PAMI capabilities, such as collective communications
and RDMA that use InfiniBand Host Channel Adapters (HCAs).

Many sample codes that can be used to demonstrate PAMI subroutines are included with the
IBM PE run time and are available in the /opt/ibmhpc/pecurrent/ppe.samples/pami folder.
Example 2-32 shows how to build the PAMI samples and run a program (alltoall.exe) that
uses the all to all communication functions.

Example 2-32 Show how to build and run PAMI sample codes

$ cp -r /opt/ibmhpc/pecurrent/ppe.samples/pami .
$ cd pami/
$ make
$ cd pami_samples
$ vi host.list
$ MP_RESD=poe MP_PROCS=4 ./coll/alltoall.exe
Context: 0
Alltoall Bandwidth Test(size:4) 0x1000e400, protocol: I1:Alltoall:P2P:P2P
Size(bytes) iterations bytes/sec usec
----------- ----------- ----------- ---------
 1 100 413223.1 2.42
 2 100 840336.1 2.38
 4 100 1659751.0 2.41
 8 100 3347280.3 2.39
 16 100 6722689.1 2.38
 32 100 13502109.7 2.37
 64 100 26778242.7 2.39
 128 100 53112033.2 2.41
 256 100 81012658.2 3.16
 512 100 171812080.5 2.98
 1024 100 320000000.0 3.20
 2048 100 552021563.3 3.71
 4096 100 869639065.8 4.71
80 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

For more information, see Parallel Environment Runtime Edition for Linux: PAMI
Programming Guide.

2.6.9 MPI programs with IBM Spectrum MPI

IBM Spectrum MPI v10-1.0.2 is a high-performance implementation of the Message Passing
Interface (MPI) Standard. It is widely used in the high-performance computing (HPC) industry
for developing scalable, parallel applications in IBM Power Systems. IBM Spectrum MPI
supports a broad range of industry-standard platforms, interconnects, and operating systems,
which helps ensure that parallel applications can run almost anywhere.

The new Spectrum MPIA includes the following features:

� Portability: A parallel software developer can create one program in a small cluster, and
scale it through the interconnects in a large cluster. This feature reduces development
time and effort.

� Network Optimization: Spectrum MPI supports various networks and interconnects.

� Collective Optimization: Through the libcollectives library, spectrum MPI can enable
GPU buffers and enhance performance and scalability, considering it provides advanced
logic to determine the fastest algorithm for any given collective operation.

Spectrum MPI is not ABI compatible. For example, it does not run with OpenMPI, Platform
MPI, or even IBM PE Runtime Edition. Multithread I/O also is not supported.

The IBM Spectrum MPI collectives component (libcollectives) does not support
intercommunicators. For intercommunicator collective support, IBM Spectrum MPI relies on
Open MPI collective components.

More information about the usage, installation, and limitations of Spectrum MPI v10-1.0.2 see
the following resources:

� IBM Spectrum MPI Version 10 Release 1.0.2 User’s Guide
� IBM Spectrum MPI Version 10 Release 1.0.2 Installation documentation
Chapter 2. Compilation, execution, and application development 81

http://publibfp.dhe.ibm.com/epubs/pdf/c2782651.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/c2782641.pdf
http://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.protocols.v2r3.pp400.doc/bl510_about.htm?cp=SSFK3V_2.3.0%2F0-0-5
http://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.protocols.v2r3.pp400.doc/bl510_about.htm?cp=SSFK3V_2.3.0%2F0-0-5
http://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.protocols.v2r3.pp400.doc/bl510_about.htm?cp=SSFK3V_2.3.0%2F0-0-5
http://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.protocols.v2r3.pp400.doc/bl510_about.htm?cp=SSFK3V_2.3.0%2F0-0-5

2.6.10 Migrating from IBM PE Runtime Edition to IBM Spectrum MPI

Table 2-20 lists instructions for how to port code from IBM PE to IBM Spectrum MPI.

Table 2-20 IBM PE Runtime Edition tasks and IBM Spectrum MPI equivalent

Task IBM PE Runtime Edition
method

IBM Spectrum MPI method

Running programs poe program [args] [options] mpirun [options] program [args]

Compiling programs The following compiler
commands:

* mpfort, mpic77, mpif90
* mpcc, mpicc
* mpCC, mpic++, mpicxx

Or the following
environment variable
settings:

MP_COMPILER = xl | gcc |
nvcc

The following compiler
commands:

* mpfort
* mpicc
* mpiCC, mpic++, mpicxx

Or the following environment
variable settings:

OMPI_CC = xl | gcc

OMPI_FC = xlf | gfortran

OMPI_CXX = xlC | g++

Determining rank before
MPI_Init

The MP_CHILD environment
variable

The
OMPI_COMM_WORLD_RAN
K environment variable

Specifying the local rank The
MPI_COMM_WORLD_LOCAL
_RANK environment variable

The
OMPI_COMM_WORLD_LOC
AL_RANK environment
variable

Setting affinity The environment variables:

* MP_TASK_AFFINITY
= cpu

* MP_TASK_AFFINITY
= core

* MP_TASK_AFFINITY
= mcm

* MP_TASK_AFFINITY
= cpu:n

* MP_TASK_AFFINITY
= core:n

* MP_TASK_AFFINITY
= 1

mpirun options:

-aff width:hwthread

-aff width:core

-aff width:numa

--map-by
ppr:$MP_TASKS_PER_NODE
:node:pe=N
--bind-to hwthread

--map-by
ppr:$MP_TASKS_PER_NODE
:node:pe=N
--bind-to core

-aff none

Setting CUDA-aware The MP_CUDA_AWARE
environment variable

The mpirun -gpu option

Setting FCA The
MP_COLLECTIVE_OFFLOAD
environment variable

The mpirun -FCA
and -fca options
82 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

For more information about migration, see IBM Spectrum MPI Version 10 Release 1.0.2
User’s Guide.

2.6.11 Using Spectrum MPI

Spectrum MPI is an implementation of the OpenMPI, which makes the source code structure
similar to what you find on OpenMPI. For example, this section describes the six most-used
procedures of Spectrum MPI, as listed in Table 2-21.

Table 2-21 IBM Spectrum most used procedures

Setting RDMA * MP_USE_BULK_XFER

* The
MP_BULK_MIN_MSG_SIZE
environment variable

RDMA default, when
MSG_SIZE is greater than 64

controlling level of debug
messages

The MP_INFOLEVEL
environment variable

The mpirun -d option

Setting STDIO The environment variables:

* MP_STDINMODE

* MP_STOUTMODE

* MP_LABELIO

The mpirun -stdio * options

Specifying the number of tasks The MP_PROCS
environment variable

The mpirun -np * option

Specifying a host list file The MP_HOSTFILE
environment variable

The mpirun -hostfile * option

Task IBM PE Runtime Edition
method

IBM Spectrum MPI method

Spectrum MPI procedure Functionality

MPI_Init() Start MPI functionality in a program

MPI_Comm_rank() ID of current MPI process in execution

MPI_Comm_size() Total number of MPI processes that were
spawned

MPI_Send() Send data to another MPI Process

MPI_Recv() Receive data from another MPI Process

MPI_Finalize() End MPI functionality in a program
Chapter 2. Compilation, execution, and application development 83

http://publibfp.dhe.ibm.com/epubs/pdf/c2782651.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/c2782651.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/c2782651.pdf

To demonstrate these procedures, Example 2-33 on page 84 shows the implementation of a
simple parallel algorithm that calculates the well-known integration of a curve following the
trapezoidal rule, which is mathematically described as the discretization of an integral, as
shown in the following example:

The trapezoidal rule creates infinitesimal trapezoids under a curve, and through their area
summation, the integral value of the curve in a close interval can be estimated. The bigger the
number of trapezoids, the more accurate the result of the estimation will be.

Why the interest in this section? Because of the mathematical properties of addition and
association, we can split this integral even in p processes (for simplicity, an even share
between the number of processes and trapezoids). Consider the Spectrum MPI code that is
shown in Example 2-33.

Example 2-33 Spectrum MPI Code for a trapezoidal integration

1. #include <stdio.h>
2. #include <mpi.h>
3.
4. float g(float x)
5. {
6. return x*x;
7. }
8.
9. float integral(float a, float b, int n, float h)
10.{
11. int i;
12.
13. float x;
14. float local_sum;
15.
16. x = a;
17. local_sum = ((g(a) + g(b)) / 2.0);
18.
19. for (i = 1; i <= n-1; i++)

f x() xd

a

b

 g x()≈

h b a–
N

------------=

g x() h
2--- f xk() f xk 1+()+()

k 0=

N 1–

≈

g x() h
2--- f x0() 2f x1() … 2f xN 1–() f xN()+ + + +[] h

2--- f x0() f xN()+() h f xk()
k 1=

N 1–

+≈ ≈

xk a hk k,+ 0 1 … N, , ,= =
84 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

20. {
21. x += h;
22. local_sum += g(x);
23. }
24.
25. return local_sum * h;
26.}
27.
28.int main(int argc, char *argv[])
29.{
30. int src; // Process id of local integral calculations
31. int dst = 0; // Process id of father that sums local calcs
32. int tag = 0; // MPI tag value for messages. Not used here.
33. int np; // Number of processes
34. int p_rank; // Process rank
35.
36. float a = -3.0; // Left interval limit
37. float b = 3.0; // Right interval limit
38. int n = 10000; // Number of trapezoids
39.
40. float local_a; // Local Left interval limit
41. float local_b; // Local Right interval limit
42. int local_n; // Local Number of trapezoids
43.
44. float h; // Trapezoid length of base
45. float local_sum; // Local Integral per process
46. float total_sum; // Total local_sum of whole interval
47.
48. MPI_Status status;
49. MPI_Init(&argc, &argv);
50. MPI_Comm_rank(MPI_COMM_WORLD, &p_rank);
51. MPI_Comm_size(MPI_COMM_WORLD, &np);
52.
53. h = (b-a) / n; // Base length of trapezoids in all interval
54. local_n = n / np; // Chunk size of trapezoids for each process
55.
56. // Division of full interval using the rank of each process
57. local_a = a + p_rank * local_n * h;
58. local_b = local_a + local_n * h;
59. local_sum = integral(local_a, local_b, local_n, h);
60.
61. if (p_rank == 0)
62. {
63. total_sum = local_sum;
64. for(src = 1; src < np; src++)
65. {
66. MPI_Recv(&local_sum, 1, MPI_FLOAT, src, tag, MPI_COMM_WORLD,

&status);
67. printf("MPI_Recv {%d <- %d} = %f\n", p_rank, src,

local_sum);
68. total_sum = total_sum + local_sum;
69. }
70. }
71. else
72. {
Chapter 2. Compilation, execution, and application development 85

73. printf("MPI_Send {%d -> %d} = %f\n", p_rank, dst, local_sum);
74. MPI_Send(&local_sum, 1, MPI_FLOAT, dst, tag, MPI_COMM_WORLD);
75. }
76.
77. if(p_rank == 0)
78. printf("\nEstimate of local_sum of x^2 = %f\nInterval

[%.3f,%.3f]\nUsing %d trapezoids\n\n", total_sum, a, b, n);
79.
80. MPI_Finalize();
81. return 0;
82.}

On line 4 in Example 2-33 on page 84, notice the function of interest is g(x) = x^2. From
lines 36 - 37, notice the interval that is being calculated in the closed interval of [-3;+3]. Also,
in the main function, observe that the MPI_Init() function is used to start the MPI program.
Immediately after, the MPI_Comm_rank() and MPI_Comm_size() are called to fetch the current
ID of each process that is spawned by MPC_Init and the total number of processes,
respectively.

At running time, Spectrum MPI fetched the number of processes from the environmental
variable (or the cli) and created processes for multiple instances of this program. Each
program featured its unique rank ID, which is the target of interest in this code.

The integral() function sequentially calculates the trapezoid integral in a closed local
interval section, following the formulas that were described in 2.6.11, “Using Spectrum MPI”
on page 83. However, on lines 57 - 59 in Example 2-33 on page 84, notice that the local
variables that were created by combining the limits from our interval with the number of
trapezoids and the rank of each MPI process created separate local intervals of our main
interval. Therefore, we can calculate the trapezoid integral for each section independently by
each MPI process.

What is still necessary is to join the results of each local integral? On line 61 in Example 2-33
on page 84, we check whether we are running the main process (which have p_rank equal to
0). If we are running the main process, we iterate between all MPI processes instances
through the function MPI_Recv to fetch their partial calculation and add that to total_sum.
However, if we are not running the process, we are in a child process; therefore, we use
MPI_Send to give the partial calculations to the main process.

Next, we describe what happened by using MPI_Send() and MPI_Recv(). Consider the
following points;

� MPI_Send (buf, count, type, dest, tag, and comm) is a blocking MPI operation that uses the
following arguments:

– buf is the address of the buffer that is being sent
– count is the number of elements in the send buffer
– type is the MPI_Datatype of the elements in the buffer
– dest is the node rank ID of the destination process
– tag is the tag that the message can receive
– comm is the communicator of this message

� MPI_Recv (buf, count, type, src, tag, comm, and status) is a blocking MPI operation that
uses the following arguments:

– buf is the address of the buffer where the process receives data
– count is the number of elements in the receiving buffer
– type is the MPI_Datatype of the elements in the buffer
– src is the node rank id of the process from where data is coming
86 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

– tag is the tag that the message can receive
– comm is the communicator of this message
– status is the object status

How to use the MPI_Datatype is listed in Table 2-22.

Table 2-22 Using MPI_Datatype

Finally, we analyze the compilation and running of Example 2-33 on page 84 next. Observe
that we use mpicc to compile, and then mpirun to run the parallel program, as shown in
Example 2-34. On the mpirun call, we provide the number of processes that we want to run
the code. The -pami_noib is used because we are using only one compute node to spawn our
processes; therefore, no InfiniBand is connected between other node.

Example 2-34 Compiling with Spectrum MPI

$ /opt/ibm/spectrum_mpi/bin/mpicc -O2 trap.c -o trap.mpi

$ /opt/ibm/spectrum_mpi/bin/mpirun -np 5 -pami_noib ./trap.mpi

MPI_Send {3 -> 0} = 1.871934
MPI_Send {1 -> 0} = 1.872049
MPI_Recv {0 <- 1} = 1.872049
MPI_Recv {0 <- 2} = 0.144001
MPI_Recv {0 <- 3} = 1.871934
MPI_Recv {0 <- 4} = 7.056407

Estimate of local_sum of x^2 = 17.999882
Interval [-3.000,3.000]
Using 10000 trapezoids

MPI_Send {2 -> 0} = 0.144001
MPI_Send {4 -> 0} = 7.056407

If you perform an analytic integration of g(x) = x^2 in [-3;3], you find the value of 18.

MPI_Datatype C Type equivalent

MPI_C_BOOL _Bool

MPI_CHAR char (text)

MPI_UNSIGNED_CHAR unsigned char (integer)

MPI_SIGNED_CHAR signed char (integer)

MPI_INT signed int

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_C_DOUBLE_COMPLEX double _Complex

Note: Although we iterate in what looks like a sequential order, our use output has no
order.
Chapter 2. Compilation, execution, and application development 87

88 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Chapter 3. Running parallel software,
performance enhancement, and
scalability testing

This chapter describes some techniques that are used to gain performance out of CPUs and
GPUs in POWER8 systems.

We also provide the results of running some source codes that were presented in Chapter 2,
“Compilation, execution, and application development” on page 23. These codes are run to
demonstrate a few tips to the reader about how to enhance, test, and scale parallel programs
in POWER8 systems.

This chapter includes the following topics:

� 3.1, “Controlling the running of multithreaded applications” on page 90
� 3.2, “Performance enhancements and scalability tests” on page 94
� 3.3, “Using IBM Parallel Environment v2.3” on page 104
� 3.4, “Using the IBM Spectrum LSF” on page 112
� 3.5, “Running tasks with IBM Spectrum MPI” on page 118

3

© Copyright IBM Corp. 2017. All rights reserved. 89

3.1 Controlling the running of multithreaded applications

Gaining performance by computing applications that run on a computing node typically is
achieved by using multiple threads, cores, or GPUs. The runtime environment has several
options to support the runtime fine-tuning of multithreaded programs.

First, this chapter describes how to control the OpenMP workload by setting certain
environment variables in XL C. Then, the chapter shows how to control OpenMP by using the
integration of IBM ESSL.

The chapter also shows the tools that can be used to retrieve or set affinity of a process at run
time. Finally, the chapter shows how to control the nonuniform memory access (NUMA) policy
for processes and shared memory1. GPUs are shown to explain the tools that can be used to
retrieve or set affinity of a process at run time. It also shows how to control the nonuniform
memory access (NUMA) policy for processes and shared memory1.

3.1.1 Running OpenMP applications

A user can control the running of OpenMP applications by setting environment variables. This
section describes only a subset of the environment variables that are especially important for
technical computing workloads.

Distribution of a workload
The OMP_SCHEDULE environment variable controls the distribution of a workload among
threads. If the workload items have uniform computational complexity, the static distribution
fits well in most cases. If an application does not specify the scheduling policy internally, a
user can set it to static at run time by exporting the environment variable, as shown in the
following example:

export OMP_SCHEDULE="static"

However, the application can control the scheduling policy from the source code as shown in
the following example:

#pragma omp parallel for schedule(kind [,chunk size])

Table 3-1 shows the options for the OpenMP scheduler of a parallel section.

Table 3-1 Scheduling options for an OpenMP parallel section

1 This section is based on the content that originally appeared in Chapter 7 of Implementing an IBM
High-Performance Computing Solution on IBM POWER8, SG24-8263.

Note: The environment variables that are prefixed with OMP_ are defined by the OpenMP
standard. Other environment variables that are described in this section are specific to a
particular compiler.

Type of scheduling Description

static Divide the loop as evenly as possible in chunks of work to the
threads. By default, the chunk size is calculated by the loop_count
divided by the number_of_threads.

dynamic By using the internal work queue, this scheduling provides blocks
of different chunk sizes to each thread at cost of extra overhead
involved. By default, the chunk size is equal to 1.
90 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Specifying the number of OpenMP threads
OpenMP applications are often written so that they can create an arbitrary number of threads.
In this case, the user sets the OMP_NUM_THREADS environment variable to specify the number of
threads to create. For example, to run the application with 20 threads, use this following
setting:

export OMP_NUM_THREADS=20

Again, the application can control the scheduling policy from the source code as shown in the
following example:

#pragma omp parallel ... num_threads(4)

Showing OpenMP data
The OpenMP 4.5 standard introduced the OMP_DISPLAY_ENV environment variable to show the
OpenMP version and list the internal control variables (ICVs). The OpenMP run time prints
data to the stderr output stream. If the user sets the value to TRUE, the OpenMP version
number and initial values of ICVs are printed.

The VERBOSE value instructs the OpenMP run time to augment the output with the values of
vendor-specific variables. If the value of this environment variable is set to FALSE or undefined,
no information is printed. This variable is useful when you must be certain that the runtime
environment is configured as expected at the moment that the program loads.

Placement of OpenMP threads
The POWER8 microprocessor can handle multiple hardware threads simultaneously. With
the increasing number of logical processors, the operating system kernel scheduler has more
possibilities for automatic load balancing. For technical computing workloads, the fixed
position of threads within the server is typically preferred.

The IDs of the logical processors are zero-based. Each logical processor has the same index,
regardless of the simultaneous multithreading (SMT) mode. Logical processors are counted
starting from the first core of the first socket. The first logical processor of the second core
features the index 8. Start numbering the logical processors of the second socket only after
you finish the numbering of the logical processors of the first socket.

guided Works similar to the dynamic scheduling; however, this scheduling
orders the chunks of work from the largest to the smallest, which
can handle imbalances more properly. By default, the chunk size is
calculated by the loop_count divided by the number_of_threads

auto The compiler decides between static, dynamic. and guided.

runtime Use the OMP_SHEDULE environment variable. The advantage of
this scheduler is that rewriting or recompiling the source code is
unnecessary.

Type of scheduling Description
Chapter 3. Running parallel software, performance enhancement, and scalability testing 91

IBM XL compilers
For the OpenMP application that is compiled with IBM XL compilers, you must use the
XLSMPOPTS environment variable to control thread placement. This environment variable
includes many suboptions, and only a few of these options control thread binding. You can
use the combination of startproc and stride suboptions, or the procs suboption. Consider
the following points:

� The startproc suboption is used to specify the starting logical processor number for
binding the first thread of an application. The stride suboption specifies the increment for
the subsequent threads. For example, the following value of XLSMPOPTS instructs the
OpenMP runtime environment to bind OpenMP threads to logical processors 80, 84, 88,
and so on, up to the last available processor:

export XLSMPOPTS=startproc=80:stride=4

� A user can also explicitly specify a list of logical processors to use for thread binding with
the procs suboption. For example, to use only even-numbered logical processors of a
processor’s second core, specify the following value of XLSMPOPTS:

export XLSMPOPTS=procs=8,10,12,14

For more information about the XLSMPOPTS environment variable, see the XLSMPOPTS
section of the online manuals at the following websites:

� XL C/C++ for Linux
� XL Fortran for Linux

GCC compilers
For the OpenMP application that is compiled with GNU Compiler Collection (GCC) compilers,
use the GOMP_CPU_AFFINITY environment variable. Assign a list of the logical processors that
you want to use to the GOMP_CPU_AFFINITY environment variable. The syntax and semantics
are the same as with the procs suboption of the IBM XL compilers XLSMPOPTS environment
variable. For more information about the GOMP_CPU_AFFINITY environment variable, see the
corresponding section of the GCC manual.

Support for thread binding in the recent versions of the OpenMP standard
The OpenMP 3.1 revision introduced the OMP_PROC_BIND environment variable. The Open MP
4.0 revision introduced the OMP_PLACES environment variable. These variables control thread
binding and affinity in a similar manner to XLSMPOPTS and GOMP_CPU_AFFINITY, although their
syntax slightly differs.

Performance affect
For more information about the thread binding affect on the performance, see 4.1, “Effects of
basic performance tuning techniques” on page 122. An easy-to-use code also is available to
generate your own binding map. For more information, see 4.3, “Sample code for the
construction of thread affinity strings” on page 145.

Note: The startproc, stride, and procs suboptions were deprecated in favor of the
OMP_PLACES environment variable. IBM intends to remove these suboptions in upcoming
releases of the IBM XL compiler runtime environment.
92 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.ibm.com/support/knowledgecenter/SSXVZZ/welcome
http://www.ibm.com/support/knowledgecenter/SSAT4T/welcome
http://bit.ly/1thwOaq
http://bit.ly/1thwOaq
http://www.ibm.com/support/knowledgecenter/SSXVZZ/welcome
http://www.ibm.com/support/knowledgecenter/SSAT4T/welcome
http://bit.ly/1thwOaq
http://bit.ly/1thwOaq

3.1.2 Setting and retrieving process affinity at run time

By using the Linux taskset command, you can manipulate the affinity of any multithreaded
program, even if you do not have access to the source code. You can use the taskset
command to start a new application with a certain affinity by specifying a mask or a list of
logical processors. The Linux scheduler restricts the application threads to a certain set of
logical processors only.

You can also use the taskset command when an application creates many threads and you
want to set the affinity for highly loaded threads only. In this circumstance, identify the process
identifiers (PIDs) of highly loaded running threads and perform binding only on those threads.
You can discover these threads by examining the output of the top -H command.

Knowing the PID, you can also use the taskset command to retrieve the affinity of the
corresponding entity (a thread or a process).

3.1.3 Controlling NUMA policy for processes and shared memory

By using the numactl command, you can specify a set of nodes and logical processors on
which you want your application. In the current context, you can assume that this tool defines
a node as a group of logical processors that are associated with a particular memory
controller. For POWER8, such a node is a whole processor.

To discover the indexes of nodes and estimate the memory access penalty, run the numactl
command with the -H argument. Example 3-1 shows the corresponding output for a 20-core
IBM Power System S822LC (Model 8335-GTB) server that is running Red Hat Enterprise
Linux Server release 7.3 little endian.

Example 3-1 The numactl -H command (truncated) output in a 20-core IBM Power System S822LC

$ numactl -H
available: 2 nodes (0,8)
< ... output omitted ... >
node distances:
node 0 8
 0: 10 40
 8: 40 10

You can pass these indexes of the nodes to numactl as an argument for the -N option to bind
the process to specific nodes. To bind the process to specific logical processors, use the -C
option. In the latter case, the indexes follow the same conventions as the OpenMP
environment variables and a taskset command.

The memory placement policy significantly affects the performance of technical computing
applications. You can enforce a certain policy by the numactl command. The -l option
instructs the operating system to always allocate memory pages on the current node. Use the
-m option to specify a list of nodes that the operating system can use for memory allocation.
You need to use the -i option to ask the operating system for a round-robin allocation policy
on specified nodes.
Chapter 3. Running parallel software, performance enhancement, and scalability testing 93

3.2 Performance enhancements and scalability tests

This section provides details about performance enhancements and scalability tests.

3.2.1 ESSL execution in multiple CPUs and GPUs

One of the many features of ESSL is the ability to compile the same source to code to run
automatically in different CPUs without any parallel programming that is performed by the
developer. This feature is demonstrated in Example 3-2, which describes how to compile and
execute Example 2-5 on page 38 from Chapter 2 by using the SMP version of ESSL and the
XLC compiler as described in 3.1.1, “Running OpenMP applications” on page 90.

Example 3-2 Compilation and execution of dgemm_sample.c for SMP ESSL

$ export XLSMPOPTS=parthds=20

$ cc_r -O3 dgemm_sample.c -lesslsmp -lxlf90_r -lxlsmp -lxlfmath
-L/opt/ibm/xlsmp/4.1.5/lib -L/opt/ibm/xlf/15.1.5/lib -R/opt/ibm/lib -o dgemm_smp

$./dgemm_smp
99.766 seconds, 161383.202 MFlops

To set the number of SMP threads, the environmental flag XLSMPOPTS is used. Therefore, 20
CPUs are running at maximum throughput when this feature is used, as shown in Figure 3-1.

Figure 3-1 Print of htop during execution of a dgemm_smp calculation of order [20,000x20,000]

This result presents a gain of approximately 11x for SMP execution when compared to its
serial runs.
94 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Performance can be enhanced further by using the SMP Compute Unified Device
Architecture (CUDA) version of ESSL, which enables the use of four GPUs to run the code,
as shown on Example 3-3 and in Figure 3-2.

Example 3-3 Compilation and execution of dgemm_sample.c for SMP GPU ESSL

$ export XLSMPOPTS=parthds=20

$ cc_r -O3 dgemm_sample.c -lesslsmpcuda -lxlf90_r -lxlsmp -lxlfmath -lcublas
-lcudart -L/usr/local/cuda/lib64 -R/usr/local/cuda/lib64
-L/opt/ibm/xlsmp/4.1.5/lib -L/opt/ibm/xlf/15.1.5/lib -R/opt/ibm/lib -o dgemm_cuda

$./dgemm_cuda
6.933 seconds, 2461471.563 MFlops

Figure 3-2 A print of nvidia-smi during the execution of dgemm_cuda
Chapter 3. Running parallel software, performance enhancement, and scalability testing 95

A 77x speedup gain can be observed when GPUs are used for this calculation. In addition,
the CUDA execution reaches almost 2.5 teraflops, as shown in Figure 3-3.

Figure 3-3 Execution and performance of dgemm

Another strategy that was used on older GPUs was the adjustment of the Power Cap Limit,
which can improve the performance of parallel software on GPU cards. However, Pascal
GPUs include the Power Cap at maximum capacity (see Example 3-4) when compared
against Figure 3-3. Therefore, this strategy is obsolete for performance improvement.

Example 3-4 Compilation and execution of dgemm_sample.c for SMP ESSL

0$ nvidia-smi -q | grep '^GPU\|Power Limit'
GPU 0002:01:00.0
 Power Limit : 300.00 W
 Default Power Limit : 300.00 W
 Enforced Power Limit : 300.00 W
 Min Power Limit : 150.00 W
 Max Power Limit : 300.00 W
GPU 0003:01:00.0
 Power Limit : 300.00 W
 Default Power Limit : 300.00 W
 Enforced Power Limit : 300.00 W
 Min Power Limit : 150.00 W
 Max Power Limit : 300.00 W
GPU 0006:01:00.0
 Power Limit : 300.00 W
 Default Power Limit : 300.00 W
 Enforced Power Limit : 300.00 W
 Min Power Limit : 150.00 W
 Max Power Limit : 300.00 W
GPU 0007:01:00.0
 Power Limit : 300.00 W
 Default Power Limit : 300.00 W
 Enforced Power Limit : 300.00 W
 Min Power Limit : 150.00 W
 Max Power Limit : 300.00 W

For more information about the new ESSL features, see the Engineering and Scientific
Subroutine Library page of the IBM Knowledge Center.
96 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.ibm.com/support/knowledgecenter/#!/SSFHY8/essl_welcome.html
http://www.ibm.com/support/knowledgecenter/#!/SSFHY8/essl_welcome.html

Running on different SMT modes
Example 3-2 on page 94 shows how to request several CPUs to the operating system to run
a job. You can also use the environment variable XLSMPOPTS to control the distribution.

The sample system has 24 physical POWER8 cores and 192 logical CPUs. Each 8 CPUs
depend on one physical core. By default, the system is set to SMT-8 mode, which means that
all 8 CPUs per core can be used. In the first run that is shown in Example 3-5, the example
uses CPUs 0 - 19. In the second run, only even numbers of CPUs are used, which simulates
SMT-4 mode. The third and fourth runs work like SMT-2 and SMT-1 modes, respectively.

Example 3-5 Different CPU binding for run with 20 SMP threads

$ export
XLSMPOPTS=parthds=20:PROCS=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
$./dgemm_smp
810.352 seconds, 19743.519 MFlops

$ export
XLSMPOPTS=parthds=20:PROCS=0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38
$./dgemm_smp
312.992 seconds, 51116.961 MFlops

$ export
XLSMPOPTS=parthds=20:PROCS=0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,7
6
$./dgemm_smp
231.852 seconds, 69006.090 MFlops

$ export
XLSMPOPTS=parthds=20:PROCS=0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120,128,13
6,144,152
$./dgemm_smp
54.732 seconds, 292318.936 MFlops
Chapter 3. Running parallel software, performance enhancement, and scalability testing 97

Figure 3-4 shows the result of dgemm_smp with the first export configuration.

Figure 3-4 Result of dgemm_smp with the first export configuration

For the fourth run with SMT-1 mode, running one thread on each POWER8 core helps to
double performance that is compared with runs without CPU binding.

ESSL SMP CUDA library options
The ESSL SMP CUDA library has the following options that are controlled by the user:

� Control which GPUs ESSL uses

By default, ESSL uses all available devices, but you can change it by using the
environment variable CUDA_VISIBLE_DEVICES or the SETGPUS subroutine. GPUs have
numeration from 0 in the operating system. For example, if you want to use only second
and third GPUs in your run, set the environment variable as shown in the following
example:

$ export CUDA_VISIBLE_DEVICES=1,2

You also can place the call into the code, as shown in Example 3-6.

Example 3-6 Binding ESSL code to GPUs

int ids[2] = {1, 2}; //GPUs IDs
int ngpus = 2; //Number of GPUs
...
setgpus(ngpus, ids);
/*your ESSL SMP CUDA call*/

You can also specify a different order of devices. It can be useful in cases when you want
to reduce latency between specific CPUs and GPUs.
98 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

� Disable or enable hybrid mode

By default, ESSL runs in hybrid mode. Therefore, ESSL routines use POWER8 CPUs and
NVIDIA GPUs. To disable this mode and start using only GPUs, you must specify the
following environment variable:

export ESSL_CUDA_HYBRID=no

To renable it, unset this variable or set it to yes.

� Pin host memory buffers

The following options are provided by ESSL:

– Not pin host memory buffers (default).

– Allow ESSL to pin buffers alone. To use this option, set the following environment
variable:

export ESSL_CUDA_PIN=yes

– Provide information to ESSL that you will pin the buffers before the ESSL routines calls:

export ESSL_CUDA_PIN=pinned

Example 3-7 shows runs of source code from Example 2-5 on page 38 with different ESSL
SMP CUDA library options. The examples use the adjusted Power Cap Limit.

Example 3-7 The dgemm_sample.c runs with different SMP CUDA options

$ export XLSMPOPTS=parthds=20
$ cc_r -O3 dgemm_sample.c -lesslsmpcuda -lxlf90_r -lxlsmp -lxlfmath -lcublas
-lcudart -L/usr/local/cuda/lib64 -R/usr/local/cuda/lib64
-L/opt/ibm/xlsmp/4.1.5/lib -L/opt/ibm/xlf/15.1.5/lib -R/opt/ibm/lib -o dgemm_cuda

$ VAR=`./dgemm_cuda`
$ echo "SMP CUDA run with 4 GPUs hybrid mode: $VAR"

$ export ESSL_CUDA_HYBRID=no
$ VAR=`./dgemm_cuda`
$ echo "SMP CUDA run with 4 GPUs non-hybrid mode: $VAR"

$ export ESSL_CUDA_HYBRID=yes
$ export CUDA_VISIBLE_DEVICES=0,1,2
$ VAR=`./dgemm_cuda`
$ echo "SMP CUDA run with 3 GPUs (1st, 2nd, 3rd) hybrid mode: $VAR"

$ export ESSL_CUDA_HYBRID=no
$ VAR=`./dgemm_cuda`
$ echo "SMP CUDA run with 3 GPUs (1st, 2nd, 3rd) non-hybrid mode: $VAR"

$ export ESSL_CUDA_HYBRID=yes
$ export CUDA_VISIBLE_DEVICES=0,1
$ VAR=`./dgemm_cuda`
$ echo "SMP CUDA run with 2 GPUs (1st, 2nd) hybrid mode: $VAR"

$ export ESSL_CUDA_HYBRID=no
$ VAR=`./dgemm_cuda`
$ echo "SMP CUDA run with 2 GPUs (1st, 2nd) non-hybrid mode: $VAR"

$ export ESSL_CUDA_HYBRID=yes
$ export CUDA_VISIBLE_DEVICES=1,2
Chapter 3. Running parallel software, performance enhancement, and scalability testing 99

$ VAR=`./dgemm_cuda`
$ echo "SMP CUDA run with 2 GPUs (2nd, 3rd) hybrid mode: $VAR"

$ export ESSL_CUDA_HYBRID=no
$ VAR=`./dgemm_cuda`
$ echo "SMP CUDA run with 2 GPUs (2nd, 3rd) non-hybrid mode: $VAR"

$ export ESSL_CUDA_HYBRID=yes
$ export CUDA_VISIBLE_DEVICES=0
$ VAR=`./dgemm_cuda`
$ echo "SMP CUDA run with 1 GPU (1st) hybrid mode: $VAR"

$ export ESSL_CUDA_HYBRID=no
$ VAR=`./dgemm_cuda`
$ echo "SMP CUDA run with 1 GPU (1st) non-hybrid mode: $VAR"

$ export ESSL_CUDA_HYBRID=yes
$ export CUDA_VISIBLE_DEVICES=3
$ VAR=`./dgemm_cuda`
$ echo "SMP CUDA run with 1 GPU (4th) hybrid mode: $VAR"

$ export ESSL_CUDA_HYBRID=no
$ VAR=`./dgemm_cuda`
$ echo "SMP CUDA run with 1 GPU (4th) non-hybrid mode: $VAR"

The results of the runs are shown in Example 3-8.

Example 3-8 Result of different ESSL SMP CUDA runs

SMP CUDA run with 4 GPUs hybrid mode: 6.965 seconds, 2297085.427 MFlops
SMP CUDA run with 4 GPUs non-hybrid mode: 5.436 seconds, 2943193.525 MFlops
SMP CUDA run with 3 GPUs (1st, 2nd, 3rd) hybrid mode: 6.118 seconds, 2615102.975
MFlops
SMP CUDA run with 3 GPUs (1st, 2nd, 3rd) non-hybrid mode: 20.126 seconds,
794951.804 MFlops
SMP CUDA run with 2 GPUs (1st, 2nd) hybrid mode: 7.141 seconds, 2240470.522 MFlops
SMP CUDA run with 2 GPUs (1st, 2nd) non-hybrid mode: 6.544 seconds, 2444865.526
MFlops
SMP CUDA run with 2 GPUs (2nd, 3rd) hybrid mode: 7.375 seconds, 2169383.051 MFlops
SMP CUDA run with 2 GPUs (2nd, 3rd) non-hybrid mode: 8.270 seconds, 1934607.013
MFlops
SMP CUDA run with 1 GPU (1st) hybrid mode: 10.700 seconds, 1495252.336 MFlops
SMP CUDA run with 1 GPU (1st) non-hybrid mode: 15.782 seconds, 1013762.514 MFlops
SMP CUDA run with 1 GPU (4th) hybrid mode: 10.469 seconds, 1528245.296 MFlops
SMP CUDA run with 1 GPU (4th) non-hybrid mode: 11.282 seconds, 1418117.355 MFlops

In this set of examples, hybrid mode is usually better than non-hybrid. However, this
configuration can be useful for cases with significant problems or large number of ESSL runs,
where improvement and a slight gain of performance is an excellent advantage.

For more information about the ESSL SMP CUDA library, see the Using the ESSL SMP
CUDA Library page of the IBM Knowledge Center website.
100 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.ibm.com/support/knowledgecenter/SSFHY8_5.5.0/com.ibm.cluster.essl.v5r5.essl100.doc/am5gr_cuda.htm
http://www.ibm.com/support/knowledgecenter/SSFHY8_5.5.0/com.ibm.cluster.essl.v5r5.essl100.doc/am5gr_cuda.htm

3.2.2 OpenACC execution and scalability

This section describes testing the performance of the OpenACC model in our system.
Example 2-17 on page 63 is run for an average of three times to create a speedup2 per block
analysis that is shown in Figure 3-5.

Figure 3-5 Scalability curve from the pi integration in OpenACC in Example 2-17 on page 63

As shown in the graph in Figure 3-5, an instant gain with all block configurations can be
observed, which saturates in approximately a 47 speedup with the pi parallelization example
by using 1,000,000,000,000 steps. This result likely indicates that the parallel part of this
piece of code was reduced to its minimum, which created the speedup threshold that is stated
on Ahmdah’ls law3.

Considering that parallelization occurs only in a for loop where the measurement is
performed, it is a fair conclusion that a threshold of maximum performance is achieved.

3.2.3 XL Offload execution and scalability

Figure 3-6 on page 102 shows the scalability curve that is obtained by a different setup of
blocks and threads in a P100 GPU. The more that the code is distributed, the more that the
speedup increases showing scalability.

2 The improvement speed of the execution of a fixed task is achieved by increasing computing elements to process
that task. It is the ratio between the sequential time of executing a task divided by the time that is taken to execute
that task in parallel with a number of processing elements.

3 Ahmdah’s Law is a known calculation in parallel computing of the theoretical speedup that can be achieved when
computing a fixed task by using multiple resources. It states that the speedup is limited by the serial part of code;
therefore, the programmer seeks to grow the parallel part of code as much as possible.
Chapter 3. Running parallel software, performance enhancement, and scalability testing 101

Figure 3-6 Scalability curve from the dgemm average execution

However, the ESSL code that is shown in Example 3-3 on page 95 still out performs this
parallelization with its 77x speedup. The example also uses matrixes of [20.000 x 20.000]
dimension, outperforming this algorithm in size.

The ESSL API not only performed its calculations in the most optimized way possible, but it
used all four GPUs to run that code. To choose which GPU to offload to, the #pragma omp
target device() call must be used, which splits and shares the parts of a vector to multiple
GPUs in our system, as shown in Example 3-9.

Example 3-9 XL C code that process a dynamically allocated vector in multiple GPUs

1. #include <stdio.h>
2. #include <stdlib.h>
3. #include <omp.h>
4.
5. #define length 16000000
6. #define verbose 0
7.
8. int main()
9. {
10. int i, *x, *y, ll, ul, dev, n_dev, chunk;
11.
12. x = (int*) malloc(sizeof(int)*length);
13. y = (int*) malloc(sizeof(int)*length);
14. n_dev = omp_get_num_devices();
15. chunk = length / n_dev;
16.
17. printf("n_dev: %d\nchunk: %d\n", n_dev, chunk);
18.
19. for(i=0;i<length;i++)
102 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

20. {
21. x[i]=(i+1);
22. if(verbose) printf("%d ",x[i]);
23. }
24. if(verbose) printf("\n");
25.
26. for (dev = 0; dev < n_dev; dev++)
27. {
28. ll = dev * chunk;
29. ul = (dev+1) * chunk;
30. #pragma omp target device(dev) firstprivate(ll, ul) map(to:

x[ll:chunk]) map(from: y[ll:chunk])
31. {
32. #pragma omp parallel for
33. for (int i = ll; i < ul; i++)
34. {
35. y[i] = 2 * x[i];
36. }
37. }
38. }
39.
40. if(verbose)
41. {
42. for (i=0; i<length; i++)
43. {
44. printf("%d ",y[i]);
45. }
46. printf("\n");
47. }
48.
49. return 0;
50.}

However, this setup is sharing and running the data asynchronously. Each GPU is being
called sequentially in the loop order to execute its data. To have a full heterogeneous system,
share and distribute the data synchronously, which can be performed in XL C by offloading to
multiple GPUs by multiple CPUs. Completing this configuration is a matter of performing the
changes that are shown in Example 3-10.

Example 3-10 XL C code processing a dynamically allocated vector in multiple GPUs synchronously

1. --- multiple_gpu.c 2017-01-05 14:56:37.245221037 -0500
2. +++ sync_multiple_gpu.c 2017-01-05 14:58:24.455228579 -0500
3. @@ -23,6 +23,9 @@ int main()
4. }
5. if(verbose) printf("\n");
6.
7. + omp_set_num_threads(n_dev);
8. +
9. + #pragma omp parallel for private(ll, ul)
10. for (dev = 0; dev < n_dev; dev++)
11. {
12. ll = dev * chunk;
Chapter 3. Running parallel software, performance enhancement, and scalability testing 103

For more information about the features of XL offloading, see the product documentation for
XL C/C++ for Linux, V13.1.5, for little endian distributions.

For more information about OpenMP, see the OpenMP Application Programming Interface
Examples documentation.

3.3 Using IBM Parallel Environment v2.3

This section describes the execution of a parallel application through the IBM Parallel
Environment (PE) Runtime.

3.3.1 Running applications

The IBM PE provides an environment to manage the execution of parallel applications, and
the Parallel Operating Environment (POE) is started with a call to the poe command line.

The execution of an application with POE spreads processes across the cluster nodes.
Consider the following points:

� Parallel tasks are created on compute nodes.

� One instance of the partition manager daemon (PMD) per compute node, which features
tasks of the running application.

� The poe process is on the submitting node (home node) machine where it was started.

The PMD controls communication between the home poe process and the created tasks in a
specific compute node. The PMD is also used to pass the standard input, output, and error
streams of the home poe to the tasks.

However, if the PMD process exits abnormally, such as with kill signals or the bkill
command of the IBM Spectrum LSF, the shared memory that is used for intra-node message
passing cannot get cleaned up properly. In this case, use the ipcrm command to reclaim that
memory.

The environment works in two modes: interactive and batch. It also allows single program,
multiple data (SPMD) and multiple program, multiple data (MPMD) programs.

Many environment variables are in place to control the behavior of poe. Some of the variables
are described next.

The number of tasks in the parallel application is specified with MP_PROCS variable that is
equivalent to the -procs option of the poe command. The application is set with 10 tasks in
the following example:

$ MP_PROCS=10 poe ./myApp

Note: IBM PE is being deprecated in favor IBM Spectrum MPI, which is a lighter and
high-performance implementation of the Message Passing Interface (MPI) Standard.

For more information about some differences, porting, and other related topics, see 2.6.9,
“MPI programs with IBM Spectrum MPI” on page 81.
104 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf
http://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf
http://www-01.ibm.com/support/docview.wss?uid=swg27048883
http://www-01.ibm.com/support/docview.wss?uid=swg27048883

The poe command manages the execution of applications that are implemented with different
models and eventually mixed. To set the messaging API, set the MP_MSG_API variable
(equivalent to the -msg_api option). The accepted values are MPI, PAMI, and shmem. It does not
need to be set for MPI programs because it is the default. In following command, poe is called
to execute a 10 task OpenSHMEM program:

$ MP_PROCS=10 MP_MSG_API=shmem poe ./myApp

Compute nodes allocation
The partition manager can connect to an external resources manager that determines the
allocation of the compute nodes. For example, the configuration that is described in 8.11,
“IBM Spectrum LSF (formerly IBM Platform LSF)” on page 359 can be configured to integrate
seamlessly with IBM PE so that hosts are selected by the Spectrum LSF bsub command for
batch jobs submission.

By default, the allocation uses any resources manager that is configured. However, it can be
disabled by setting MP_RESD (or -resd option). Also, native partition manager nodes allocation
mechanism are enabled with MP_RESD=poe and require a hosts list file.

Example 3-11 shows what a host list file looks like when resource manager is not used with
poe. Notice MP_RESD=poe is exported to enable the internal host allocation mechanism.

Example 3-11 Run parallel application without resource manager through IBM PE

$ cat host.list
! Host list - One host per line
! Tasks 0 and 2 run on p8r1n1 host
! Tasks 1 and 3 run on p8r2n2 host
p8r1n1
p8r2n2
p8r1n1
p8r2n2
$ MP_PROCS=4 MP_RESD=poe poe ./myApp

The format and content of the hosts list file changes whether a resource manager is used. For
more information, see the IBM PE documentation.

If it needs to point out the host file location, use the MP_HOSTFILE variable (same as -hostfile
option of poe). If it is not set, poe looks for a file that is named host.list in the local directory.

When a resource manager is in place, the system administrators often configure pools of
hosts. Therefore, consider the use of the MP_RMPOOL variable (or -rmpool option) to determine
which of the pools of machines were configured (if any) by the administrators to use.

Other variables are available to configure the resource manager behavior. The MP_NODES
(-nodes option) set the number of physical nodes and MP_TASKS_PER_NODE (-tasks_per_node
option) variables set the number of tasks per nodes.

Considerations about network configuration
The IBM PE provides variables to control and configure the use of network adapters by the
parallel applications. Some variables might be implicitly set, depending on the combination of
other settings or by the use of a resource manager.
Chapter 3. Running parallel software, performance enhancement, and scalability testing 105

http://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.pe.v2r3.pe100.doc/am102_chlf.htm

To specify the network adapters to use for message passing, set the MP_EUIDEVICE variable
(or -euidevice option). It accepts the value sn_all (one or more windows are on each
network) or sn_single (all windows are on a single network). The sn_all value is frequently
used to enable protocol stripping, failover, and recovery.

Network adapters can be shared or dedicated. That behavior is defined by using the
MP_ADAPTER_USE variable (or -adapter_use option). It accepts the shared and dedicated
values.

Considerations about Remote Direct Memory Access
The IBM PE implements message passing by using Remote Direct Memory Access (RDMA)
through the InfiniBand interconnect. In such a mechanism, memory pages are automatically
pinned and buffer transferences are handled directly by the InfiniBand adapter without the
host CPU involvement.

RDMA on messaging passing is disabled by default. Export MP_USE_BULK_XFER=yes to enable
bulk data transfer mechanism. Also, use the MP_BULK_MIN_MSG_SIZE variable to set the
minimum message length for bulk transfer.

Considerations about affinity
Several levels of affinity are available for parallel applications through poe. These levels are
also controlled by environment variables (or poe options). Because resource managers
usually employ their own affinity mechanisms, those variables can be overwritten or ignored.

The primary variable to control placement of message passing interface (MPI) tasks is
MP_TASK_AFFINITY (or -task_affinity option), when a resource manager is not used. You
can bind tasks at the physical processor (core value), logical CPU (cpu value), and multi-chip
module (mcm value) levels.

For example, the following command allocates one core per task:

$ poe -task_affinity core -procs 2 ./myApp

More examples of MP_TASK_AFFINITY being used to control task affinity are described in 2.6.5,
“MPI programs with IBM Parallel Environment v2.3” on page 70.

The MP_CPU_BIND_LIST (or -cpu_bind_list option) and MP_BIND_MODE (or -bind_mode spread
option) environment variables can be used with MP_TASK_AFFINITY to further control the
placement of tasks. MP_CPU_BIND_LIST specifies a list of processor units for establishing task
affinity. In the following command, affinity is restricted to only the second core of each socket:

$ poe -task_affinity core -cpu_bind_list 0/16,8/1040 -procs 2

When a resource manager is used, the MP_PE_AFFINITY variable can be set to yes so that poe
assumes control over affinity. However, if IBM Spectrum Load Sharing Facility (LSF) is used
and it set the affinity, poe honors the allocated CPUs. If MP_PE_AFFINITY=yes is enabled in
Spectrum LSF batch jobs, it enables the InfiniBand adapter affinity.

To assist with defining affinity, the IBM PE run time provides the cpuset_query command that
displays information about current assignments of a running program. It also provides the
topology of any specific compute node. As shown in Example 3-12 on page 107,
cpuset_query -t displays the topology of an IBM S822LC system that is running on SMT-8
mode with two sockets with 10 cores each with eight hardware threads.
106 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Example 3-12 The cpuset_query command to show the node topology

$ cpuset_query -t
MCM(Socket): 0
 CORE: 8
 CPU: 0
 CPU: 1
 CPU: 2
 CPU: 3
 CPU: 4
 CPU: 5
 CPU: 6
 CPU: 7
 CORE: 16
 CPU: 8
 CPU: 9
 CPU: 10
 CPU: 11
 CPU: 12
 CPU: 13
 CPU: 14
 CPU: 15
<... Output Omitted ...>
MCM(Socket): 8
 CORE: 1032
 CPU: 80
 CPU: 81
 CPU: 82
 CPU: 83
 CPU: 84
 CPU: 85
 CPU: 86
 CPU: 87
 CORE: 1040
 CPU: 88
 CPU: 89
 CPU: 90
 CPU: 91
 CPU: 92
 CPU: 93
 CPU: 94
 CPU: 95
 CORE: 1048
<... Output Omitted ...>
Chapter 3. Running parallel software, performance enhancement, and scalability testing 107

The affinity can be checked by running the cpuset_query command through poe, as shown in
Example 3-13. The command shows a two tasks program that is started with affinity at a core
level. Each task is allocated (see CPUs with value 1) with a full core that has eight hardware
threads on SMT-8 mode node.

Example 3-13 cpuset_query command to show task affinity

MCM/QUAD(0) contains:
cpu0, cpu1, cpu2, cpu3, cpu4,
cpu5, cpu6, cpu7, cpu8, cpu9,
cpu10, cpu11, cpu12, cpu13, cpu14,
cpu15, cpu16, cpu17, cpu18, cpu19,
cpu20, cpu21, cpu22, cpu23, cpu24,
cpu25, cpu26, cpu27, cpu28, cpu29,
cpu30, cpu31, cpu32, cpu33, cpu34,
cpu35, cpu36, cpu37, cpu38, cpu39,
cpu40, cpu41, cpu42, cpu43, cpu44,
cpu45, cpu46, cpu47, cpu48, cpu49,
cpu50, cpu51, cpu52, cpu53, cpu54,
cpu55, cpu56, cpu57, cpu58, cpu59,
cpu60, cpu61, cpu62, cpu63, cpu64,
cpu65, cpu66, cpu67, cpu68, cpu69,
cpu70, cpu71, cpu72, cpu73, cpu74,
cpu75, cpu76, cpu77, cpu78, cpu79,
[Total cpus for MCM/QUAD(0)=80]
MCM/QUAD(8) contains:
cpu80, cpu81, cpu82, cpu83, cpu84,
cpu85, cpu86, cpu87, cpu88, cpu89,
cpu90, cpu91, cpu92, cpu93, cpu94,
cpu95, cpu96, cpu97, cpu98, cpu99,
cpu100, cpu101, cpu102, cpu103, cpu104,
cpu105, cpu106, cpu107, cpu108, cpu109,
cpu110, cpu111, cpu112, cpu113, cpu114,
cpu115, cpu116, cpu117, cpu118, cpu119,
cpu120, cpu121, cpu122, cpu123, cpu124,
cpu125, cpu126, cpu127, cpu128, cpu129,
cpu130, cpu131, cpu132, cpu133, cpu134,
cpu135, cpu136, cpu137, cpu138, cpu139,
cpu140, cpu141, cpu142, cpu143, cpu144,
cpu145, cpu146, cpu147, cpu148, cpu149,
cpu150, cpu151, cpu152, cpu153, cpu154,
cpu155, cpu156, cpu157, cpu158, cpu159,
[Total cpus for MCM/QUAD(8)=80]

Total number of MCMs/QUADs found = 2
Total number of COREs found = 20
Total number of CPUs found = 160
cpuset for process 95014 (1 = in the set, 0 = not included)
cpu0 = 1
cpu1 = 1
cpu2 = 1
cpu3 = 1
cpu4 = 1
cpu5 = 1
cpu6 = 1
cpu7 = 1
108 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

cpu8 = 0
cpu9 = 0
cpu10 = 0
cpu11 = 0
cpu12 = 0
cpu13 = 0
cpu14 = 0
cpu15 = 0
<... Output Omitted ...>
MCM/QUAD(0) contains:
cpu0, cpu1, cpu2, cpu3, cpu4,
cpu5, cpu6, cpu7, cpu8, cpu9,
cpu10, cpu11, cpu12, cpu13, cpu14,
cpu15, cpu16, cpu17, cpu18, cpu19,
cpu20, cpu21, cpu22, cpu23, cpu24,
cpu25, cpu26, cpu27, cpu28, cpu29,
cpu30, cpu31, cpu32, cpu33, cpu34,
cpu35, cpu36, cpu37, cpu38, cpu39,
cpu40, cpu41, cpu42, cpu43, cpu44,
cpu45, cpu46, cpu47, cpu48, cpu49,
cpu50, cpu51, cpu52, cpu53, cpu54,
cpu55, cpu56, cpu57, cpu58, cpu59,
cpu60, cpu61, cpu62, cpu63, cpu64,
cpu65, cpu66, cpu67, cpu68, cpu69,
cpu70, cpu71, cpu72, cpu73, cpu74,
cpu75, cpu76, cpu77, cpu78, cpu79,
[Total cpus for MCM/QUAD(0)=80]
MCM/QUAD(8) contains:
cpu80, cpu81, cpu82, cpu83, cpu84,
cpu85, cpu86, cpu87, cpu88, cpu89,
cpu90, cpu91, cpu92, cpu93, cpu94,
cpu95, cpu96, cpu97, cpu98, cpu99,
cpu100, cpu101, cpu102, cpu103, cpu104,
cpu105, cpu106, cpu107, cpu108, cpu109,
cpu110, cpu111, cpu112, cpu113, cpu114,
cpu115, cpu116, cpu117, cpu118, cpu119,
cpu120, cpu121, cpu122, cpu123, cpu124,
cpu125, cpu126, cpu127, cpu128, cpu129,
cpu130, cpu131, cpu132, cpu133, cpu134,
cpu135, cpu136, cpu137, cpu138, cpu139,
cpu140, cpu141, cpu142, cpu143, cpu144,
cpu145, cpu146, cpu147, cpu148, cpu149,
cpu150, cpu151, cpu152, cpu153, cpu154,
cpu155, cpu156, cpu157, cpu158, cpu159,
[Total cpus for MCM/QUAD(8)=80]

Total number of MCMs/QUADs found = 2
Total number of COREs found = 20
Total number of CPUs found = 160
cpuset for process 95015 (1 = in the set, 0 = not included)
cpu0 = 0
cpu1 = 0
cpu2 = 0
cpu3 = 0
cpu4 = 0
Chapter 3. Running parallel software, performance enhancement, and scalability testing 109

cpu5 = 0
cpu6 = 0
cpu7 = 0
cpu8 = 1
cpu9 = 1
cpu10 = 1
cpu11 = 1
cpu12 = 1
cpu13 = 1
cpu14 = 1
cpu15 = 1
cpu16 = 0
cpu17 = 0
cpu18 = 0
cpu19 = 0
cpu20 = 0
cpu21 = 0
cpu22 = 0
cpu23 = 0
<... Output Omitted ...>

Considerations about CUDA-aware MPI
The IBM PE run time implements a CUDA-aware MPI mechanism, but it is disabled by
default. Use the MP_CUDA_AWARE=yes variable to enable it. For more information, see 2.6.6,
“Hybrid MPI and CUDA programs with IBM Parallel Environment” on page 75.

3.3.2 Managing application

IBM PE Runtime provides a set of commands to manage stand-alone poe jobs. This section
introduces the most common commands.

Canceling an application
Because the poe command handles the signal of all tasks in the partition, sending an interrupt
(SIGINT) or terminate (SIGTERM) signal triggers it to all remote processes. If poe runs with
100413 process ID, you can end the program by using the following command:

$ kill -s SIGINT 100413

However, if some remote processes are orphan, use the poekill program_name to end all
remaining tasks. In fact, poekill can send any signal to all the remote processes.

Suspend and resume a job
To cancel a poe process, suspend and resume applications by way of signals. Use a poekill
or kill command to send a SIGTSTP to suspend the poe process (which triggers the signal to
all tasks).

The application can be resumed by sending a SIGCONT to continue poe. Use a poekill, kill,
fg, or bg command to deliver the signal.
110 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

3.3.3 Running OpenSHMEM programs

The following environment variables can be set to run an OpenSHMEM program with the IBM
PE run time through a poe command:

� MP_MSG_API=shmem

Instructs poe to use openSHMEM message passing API.

� MP_USE_BULK_XFER=yes

Enables the use of RDMA in Parallel Active Messaging Interface (PAMI).

MP_PROCS=<num> can be used to set the number of processing elements.

NAS Parallel Benchmarks with OpenSHMEM
The NAS Parallel Benchmarks4 (NPBs) are a well-known suite of parallel applications that are
often used to evaluate high-performance computers. The benchmark provides programs,
kernels, and problem solvers that simulate aspects, such as computation, data movement,
and I/O of real scientific applications. You can select the size of the workload that each
benchmark processes among a list of classes (A, B, C, and so on).

A version of NPB that is rewritten by using OpenSHMEM in C and Fortran was released by the
openshmem.org group. NPB3.2-SHMEM is the implementation of NPB 3.2 and provides
some benchmarks in Fortran and only one in C, as shown in Example 3-14.

Example 3-14 The openshmen-npbs implementation

$ git clone https://github.com/openshmem-org/openshmem-npbs
$ cd openshmem-npbs/C
$ cd config
$ cp suite.def.template suite.def
$ cp make.def.template make.def
Set CC in make.def
$ cd ../
$ make is NPROCS=2 CLASS=A
make suite
$ cd bin
$ ls
host.list is.A.2
[developer@redbook01 bin]$ MP_RESD=poe oshrun -np 2 ./is.A.2

This section uses the Integer Sort kernel implementation of NPB3.2-SHMEM to demonstrate
the use of OpenSHMEM with IBM PE, and the affect of some configurations on the
performance of the application.

The Integer Sort benchmark was compiled by using the oshcc compiler script of the IBM PE
and the IBM XL C compiler.

The workload class C of the Integer Sort benchmark was run as shown in Example 3-14.

4 For more information about NAS Parallel Benchmarks, see http://www.nas.nasa.gov/publications/npb.html.
Chapter 3. Running parallel software, performance enhancement, and scalability testing 111

http://www.nas.nasa.gov/publications/npb.html

3.4 Using the IBM Spectrum LSF

The IBM Spectrum LSF is a load and a resources manager that allows shared access to
cluster hosts while maximizing occupancy and the efficient use of resources.

Spectrum LSF provides a queue-based and policy-driven scheduling system for a user’s
batch jobs that employs mechanisms to optimize resource selection and allocation based on
the requirements of the application.

All development models that are described in Chapter 2, “Compilation, execution, and
application development” on page 23 are fully supported by Spectrum LSF. The preferred way
to run applications in a production cluster is by using the Spectrum LSF job submission
mechanism. Also, you can manage any job. This section describes how to submit and
manage jobs by using Spectrum LSF commands.

3.4.1 Submit jobs

This section describes the job submission process. For more information about the tools that
are used to monitor jobs and queues, see Chapter 6, “Cluster monitoring and health
checking” on page 289.

To submit a job to Spectrum LSF, use the bsub command. Spectrum LSF allows you to submit
by using command-line options, interactive command-line mode, or a control file. The tool
provides the following options that allows fine-grained job management:

� Control input and output parameters
� Define limits
� Specify submission properties
� Notify users
� Control scheduling and dispatch
� Specify resources and requirements

The simplest way to submit a job is to use the command-line options, as shown in
Example 3-15.

Example 3-15 Spectrum LSF bsub command to submit a job by using command-line options

$ bsub -o %J.out -e %J.err -J 'omp_affinity' -q short './affinity'
Job <212> is submitted to queue <short>.

Example 3-15 shows some basic options of the bsub command. The -o, -i, and -e flags
specify standard output, input, and error files, respectively. As shown in Example 3-15, -J
sets the job name, but it can also be used to submit multiple jobs (also know as an array of
jobs). and -q sets the queue of which it can be a part. If the -q flag is not specified, the default
queue is used (usually the normal queue). The last option that is shown in Example 3-15 is
the application to be run.

The use of the shell script is convenient when you must submit jobs regularly or that require
many parameters. The file content that is shown in Example 3-16 on page 113 is a regular
shell script that embodies special comments (lines starts with #BSUB) to control the behavior of
the bsub command, and runs the noop application by using the /bin/sh interpreter.
112 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Example 3-16 Shell script to run Spectrum LSF batch job

#!/bin/sh

#BSUB -o %J.out -e %J.err
#BSUB -J serial

./noop

The bsub myscript or bsub < myscript commands can be issued to submit a script to
Spectrum LSF. In the first case, myscript is not spooled, which means that changes on the
script takes effect if the job is still executing. On the other side, bsub < myscrypt (see
Example 3-17) spools the script.

Example 3-17 Spectrum LSF bsub command to submit a script job

$ bsub < noop_lsf.sh
Job <220> is submitted to default queue <normal>.

Considerations for OpenMP programs
You can use environment variables to control the execution of OpenMP applications as
described in 3.1.1, “Running OpenMP applications” on page 90. By default, the bsub
command propagates all variables on the submitting host to the environment on the target
machine.

Example 3-18 shows some OpenMP control variables (OMP_DISPLAY_ENV, OMP_NUM_THREADS,
and OMP_SCHEDULE), which are exported on the environment before a job is scheduled to run
on the p8r2n2 host. The content of 230.err file, where errors are logged, shows that those
variables are propagated on the remote host.

Example 3-18 Exporting OpenMP variables to Spectrum LSF bsub command

$ export OMP_DISPLAY_ENV=true
$ export OMP_NUM_THREADS=20
$ export OMP_SCHEDULE="static"
$ bsub -m "p8r2n2" -o %J.out -e %J.err ./affinity
Job <230> is submitted to default queue <normal>.
$ cat 230.err

OPENMP DISPLAY ENVIRONMENT BEGIN
 _OPENMP = '201307'
 OMP_DYNAMIC = 'FALSE'
 OMP_NESTED = 'FALSE'
 OMP_NUM_THREADS = '20'
 OMP_SCHEDULE = 'STATIC'
 OMP_PROC_BIND = 'FALSE'
 OMP_PLACES = ''
 OMP_STACKSIZE = '70368222510890'
 OMP_WAIT_POLICY = 'PASSIVE'
 OMP_THREAD_LIMIT = '4294967295'
 OMP_MAX_ACTIVE_LEVELS = '2147483647'
 OMP_CANCELLATION = 'FALSE'
 OMP_DEFAULT_DEVICE = '0'
OPENMP DISPLAY ENVIRONMENT END
Chapter 3. Running parallel software, performance enhancement, and scalability testing 113

If you do not want to export OpenMP environment variables, the -env option can be used to
control how bsub propagates them. For example, the same results that are shown in
Example 3-18 can be achieved by using the following command, but without exporting any
variables:

$ bsub -m "p8r2n2" -o %J.out -e %J.err -env "all, OMP_DISPLAY_ENV=true,
OMP_NUM_THREADS=20, OMP_SCHEDULE='static'" ./affinity

Example 3-19 shows how the environment variables can be set in a job script to control the
OpenMP behavior.

Example 3-19 Exporting OpenMP variables to Spectrum LSF job script

#!/bin/bash

#BSUB -J "openMP example"
#BSUB -o job_%J.out -e job_%J.err
#BSUB -q short
#BSUB -m p8r2n2

export OMP_NUM_THREADS=20
export OMP_SCHEDULE=static
export OMP_DISPLAY_ENV=true

./affinity

Considerations for MPI programs
Use the -n option of the bsub command to allocate the number of tasks (or job slots) for the
parallel application. Depending on the configuration of Spectrum LSF, job slots can be set in
terms of CPUs in the cluster. For example, the following command submits an MPI job with
six tasks:

$ bsub -n 6 -o %J.out -e %J.err poe ./helloMPI

You can select a set of hosts for a parallel job by using the following bsub command options:

� Use the -m option to select hosts or groups of hosts.
� Resources-based selection with requirements expressions is done by using the -R option.
� Indicate a host file by using the -hostfile option. Do not use with -m or -R options.

The following examples show the use of -m and -R, respectively, to allocate hosts. In the
following example, run two tasks of an MPI application on hosts p8r1n1 and p8r2n2:

$ bsub -n 2 -m "p8r1n1! p8r2n2" -o %J.out -e %J.err poe ./myAPP

In the following example, the “!” symbol indicates that poe is first executed on p8r1n1:

$ bsub -n 4 -R "select[ncores==20] same[cpuf]" -o %J.out -e %J.err poe ./myApp

Run four tasks of an MPI application on hosts with 20 CPU cores (select[ncores==20]) if
they have same CPU factor (same[cpuf]).

The job locality can be specified with the span string in a resources requirement expression
(-R option). One of the following formats can be used to specify the locality:

� span[hosts=1]: Set to run all tasks on same host
� span[ptile=n]: Where n is an integer that sets the number of tasks per host
� span[block=size]: Where size is an integer that sets the block size
114 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Job task affinity is enabled by using the affinity string in the resources requirement
expression (-R option). The affinity applies to CPU or memory, and is defined in terms of
processor units that are assigned per task (core, numa, socket, and task). The following
example features a 10 task MPI application, allocated five per host, and each with four
designated cores with binding by threads:

$ bsub -n 10 -R "select[ncores >= 20] span[ptile=5]
affinity[core(4):cpubind=thread]" -o %J.out -e %J.err

Further processor unit specification makes the affinity expression powerful. For more
information about affinity expressions in Spectrum LSF, see the Affinity string page of the IBM
Knowledge Center website.

Spectrum LSF integrates well with the IBM PE Runtime Edition and supports the execution of
parallel applications through poe. Some configurations in Spectrum LSF are required. For
more information, see 5.6.14, “IBM Spectrum LSF” on page 266.

Example 3-20 includes a Spectrum LSF job script to execute an MPI program with poe.
(Notice that the IBM PE environment variables are going to take effect.)

Example 3-20 Spectrum LSF job script to submit a simple IBM PE application

#!/bin/bash

#BSUB -J "MPILocalRank" # Set job name
#BSUB -o lsf_job-%J.out # Set output file
#BSUB -e lsf_job-%J.err # Set error file
#BSUB -q short # Set queue
#BSUB -n 5 # Set number of tasks

export MP_INFOLEVEL=1
export LANG=en_US
export MP_RESD=POE
poe ./a.out

Spectrum LSF provides a native network-aware scheduling of the IBM PE parallel application
through the -network option of the bsub command. That option encloses the attributes that
are listed in Table 3-2.

Table 3-2 Spectrum LSF bsub network attributes for IBM PE

Attribute Description Values

type Manage network windows
reservation

� sn_single (reserves
windows from one network
for each task)

� sn_all (reserve windows
from all networks for each
task)

protocol Set the messaging API in use � mpi
� shmem
� pami

mode The network type � US
� IP
Chapter 3. Running parallel software, performance enhancement, and scalability testing 115

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_admin/affinity_res_req_string.dita
http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_admin/affinity_res_req_string.dita

The following command submits a two tasks (-n 2) MPI (protocol=mpi) job. It shares the
network adapters (usage=shared) and reserves windows on all of them:

$ bsub -n 2 -R "span[ptile=1]" -network "protocol=mpi:type=sn_all:
instances=2:usage=shared" poe ./myApp

Considerations for CUDA programs
You can use graphics processing unit (GPU) resources mapping when requirements
expressions are used to allocate hosts and express usage reservation. If Spectrum LSF is
configured (see 5.6.14, “IBM Spectrum LSF” on page 266), the following resource fields are
available:

� ngpus: Total number of GPUs
� ngpus_shared: Number of GPUs in share mode
� ngpus_excl_t: Number of GPUs in exclusive thread mode
� ngpus_excl_p: Number of GPUs in exclusive process mode

The ngpus resource field can be used in requirement expressions (-R option) for demanding
the number of GPUs that are needed to execute a CUDA application. The following command
submits a job to any host with one or more GPU:

$ bsub -R "select [ngpus > 0]" ./cudaApp

In terms of usage, it can reserve GPUs by setting ngpus_shared (number of shared),
ngpus_excl_t (number of GPUs on exclusive thread mode), ngpus_excl_p (number of GPUs
on exclusive process mode) resources. Use the rusage with -R option of the bsub command to
reserve GPU resources.

In Example 3-21, the job script sets one GPU in shared mode to be used by a cudaCUDA
application.

Example 3-21 Script to set one GPU in shared mode to be used by a cudaCUDA application

#!/bin/bash

#BSUB -J "HelloCUDA"
#BSUB -o helloCUDA_%J.out -e helloCUDA_%J.err
#BSUB -R "select [ngpus > 0] rusage [ngpus_shared=1]"

./helloCUDA

Regarding exclusive use of GPUs by parallel applications, set the value of ngpus_excl_t or
ngpus_excl_p to change run mode properly. The following example executes a parallel two
tasks (-n 2) application in one host (span[hosts=1]), where each host reserves two GPUs on
exclusive process mode (rusage[ngpus_excl_p=2]):

$ bsub -n 2 -R “select[ngpus > 0] rusage[ngpus_excl_p=2] span[hosts=1]” poe
./mpi-GPU_app

usage The network adapter usage
among processes

� shared
� dedicated

instance Number of instances for
reservation window

Positive integer number

Attribute Description Values
116 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Considerations for OpenSHMEM
The -network option of the bsub command can set the parallel communication protocol of the
application. For an OpenSHMEM application, it can be set by using the following command:

$ bsub -n 10 -network ”protocol=shmem” poe ./shmemApp

3.4.2 Manage jobs

Spectrum LSF provides a set of commands to manage batch jobs. This section introduces the
most common commands.

Modifying a job
The batch job can assume several statuses throughout its lifecycle. The following statuses are
most common:

� PEND: Waiting to be scheduled status
� RUN: Running status
� PSUSP, USUSP, or SSUSP: Suspended status
� DONE or EXIT: Terminated status

Submission parameters of a job can be modified in pending or running status. To change it,
use the bmod command.

Most submission parameters can be changed by using the bmod command. The command
can include an option to cancel the option, reset the option to its default value, or override the
option.

To override a submission parameter, use the same option as in bsub. In the following example,
-o “%J_noop.out” changes the output file of the job with identifier 209:

$ bmod -o "%J_noop.out" 209
Parameters of job <209> are being changed

To cancel a submission parameter, append n to the option. For example, -Mn removes the
memory limits.

For more information about the bmod command, see the bmod page of the IBM Knowledge
Center website.

Canceling a job
To cancel one or more jobs, use the bkill command. This command by default sends the
SIGINT, SIGTERM, and SIGKILL signals in sequence on Linux. The time interval can be
configured in the lsb.params configuration file. In reality, bkill -s <signal> sends the
<signal> signal to the job.

The user can cancel their own jobs only. The root and Spectrum LSF administrators can end
any job.

In the following example, the job with identifier 217 is ended:

$ bkill 217
Job <217> is being terminated

Suspend and resume a job
To suspend one or more unfinished jobs, use the bstop command. In Linux, it sends the
SIGSTOP signal to serial jobs and the SIGTSTP signal to parallel jobs). As an alternative, the
bkill -s SIGSTOP or the bkill -s SIGTSTP commands send the stop signal to a job.
Chapter 3. Running parallel software, performance enhancement, and scalability testing 117

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_command_ref/bmod.1.dita

In Example 3-22, the job with identifier 220 did not finish (status RUN) when it is stopped
(bstop 220). As a result, bjobs 220 shows it is now in a suspended status (USUSP).

Example 3-22 Spectrum LSF bstop command to suspend a job

$ bjobs 220
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
220 wainers RUN normal p8r1n1 p8r2n2 serial Apr 17 16:06
$ bstop 220
Job <220> is being stopped
$ bjobs 220
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
220 wainers USUSP normal p8r1n1 p8r2n2 serial Apr 17 16:06

To resume a job, use the bresume command. In Linux, it sends a SIGCONT signal to the
suspended job. To stop or end a job, bkill -s can be used to send the continue signal bkill
-s CONT. The following command shows how to resume the job that was stopped in
Example 3-22:

$ bresume 220
Job <220> is being resumed

3.5 Running tasks with IBM Spectrum MPI

In 2.6.11, “Using Spectrum MPI” on page 83, the use of Spectrum MPI to run jobs in a
compute node through the mpirun command is described. This section shows several other
features of running Spectrum MPI jobs through mpirun.

Portable Hardware Locality (hwloc)
A useful API to know the physical and logical architecture of your POWER8 system is the
hwloc (Portable Hardware Locality). This API aids to identify and display information about
NUMA memory nodes, sockets, shared caches, cores, simultaneous multithreading, system
attributes, and the locality of I/O.

For example, through hwloc you can use the --report-bindings on the mpirun command with
any Spectrum MPI program to fetch a hardware description, as shown in Example 3-23.

Example 3-23 Usage of --report-bindings in the mpirun command

$ [desnesn@c712f7n03 examples]$ /opt/ibm/spectrum_mpi/bin/mpirun -np 1
--report-bindings -pami_noib ./trap.mpi
[c712f7n03:66785] MCW rank 0 bound to socket 0[core 0[hwt 0-7]], socket 0[core
1[hwt 0-7]], socket 0[core 2[hwt 0-7]], socket 0[core 3[hwt 0-7]], socket 0[core
4[hwt 0-7]], socket 0[core 5[hwt 0-7]], socket 0[core 6[hwt 0-7]], socket 0[core
7[hwt 0-7]], socket 0[core 8[hwt 0-7]], socket 0[core 9[hwt 0-7]]:
[BBBBBBBB/BBBBBBBB/BBBBBBBB/BBBBBBBB/BBBBBBBB/BBBBBBBB/BBBBBBBB/BBBBBBBB/BBBBBBBB/
BBBBBBBB][......../......../......../......../......../......../......../......../
......../........]

Estimate of local_sum of x^2 = 18.000229
Interval [-3.000,3.000]
Using 10000 trapezoids
118 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

The last line that is presented, for example,
[BBBBBBBB/BBBBBBBB/BBBBBBBB/BBBBBBBB/BBBBBBBB/BBBBBBBB/BBBBBBBB/BBBBBBBB/BBBBBBBB/
BBBBBBBB][......../......../......../......../......../......../......../......../
......../........] means that two sockets are available, each with 10 cores, and each core
with 8 hyper-threads. This configuration is compliant with the run of nproc, which presents a
value of 160. Also, the sets of the letter B means that the MPI processes are bound to the first
socket.

GPU support
Another valuable feature of the IBM Spectrum MPI is the support of running GPU-accelerated
applications over CUDA-aware MPI by using the CUDA Toolkit version 8.0.

Sharing work with different hosts in your network
To distribute instances of a Spectrum MPI program through mpirun, use the following
command:

$ mpirun -host h1,h2 prog1

This command runs one instance of prog1 on host h1 and host h2.

However, mpirun can be used to run jobs in a Single Program, Multiple Data (SPMD) manner.
For example, if you want host h2 to receive three instances of prog1, mpirun is run as shown
in the following command:

$ mpirun -host h1, h2, h2, h2 prog1

SPMD can also be performed by using a host file, as shown in Example 3-24.

Example 3-24 Performing SPMD by using a host file

$ cat hosts
c712f7n02.somedomain.ibm.com
c712f7n03.somedomain.ibm.com
$ mpirun -np 2 --host file hosts prog2

Also, mpirun can be used to run jobs in a Multiple Program, Multiple Data (MPMD) manner,
which can be performed by using a host file as shown in the following command:

$ mpirun -np 2 prog3 : -np 3 prog4

This command includes two instances of prog3 and three instances of prog4.

For more information about how to use mpirun, use the -h (help) option with the command, or
see the IBM Spectrum MPI Version 10 Release 1.0.2 User’s Guide.

Note: By default, GPU support is turned off. To turn it on, use the -gpu flag on the mpirun
command.
Chapter 3. Running parallel software, performance enhancement, and scalability testing 119

http://publibfp.dhe.ibm.com/epubs/pdf/c2782651.pdf#[{%22num%22:377,%22gen%22:0},{%22name%22:%22XYZ%22},null,null,null]

120 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Chapter 4. Measuring and tuning
applications

This chapter describes how to measure and tune applications.

This chapter includes the following topics:

� 4.1, “Effects of basic performance tuning techniques” on page 122
� 4.2, “General methodology of performance benchmarking” on page 137
� 4.3, “Sample code for the construction of thread affinity strings” on page 145
� 4.4, “ESSL performance results” on page 149
� 4.5, “GPU tuning” on page 154
� 4.6, “Application development and tuning tools” on page 159

4

© Copyright IBM Corp. 2017. All rights reserved. 121

4.1 Effects of basic performance tuning techniques

This section evaluates the effects of basic performance tuning techniques. It uses the NAS
Parallel Benchmarks (NPB)1 suite of applications as an example.

The NPB suite was originally used for complex performance evaluation of supercomputers.
The developers of the NPB programs distilled the typical computational physics workloads
and put the most widespread numerical kernels into their product.

This section uses the OpenMP types of NPB benchmarks to achieve the following goals:

� Show the performance variation for the different SMT modes
� Provide guidance for the choice of compilation parameters
� Demonstrate the importance of binding threads to logical processors

The benchmarking used a 20-core IBM Power System S822LC (model 8335-GTB) based on
the POWER8 processor. The processor base frequency was 2.86 GHz. The Linux scaling
governors were set to performance so that the effective frequency increased to 3.93 GHz.

Each of eight memory riser cards of the system was populated with four 8 GB RAM modules
for a total of 256 GB. The server was running Red Hat Enterprise Linux operating system
version 7.3 (little-endian). The operating system was installed in a non-virtualized mode. The
Linux kernel version was 3.10.0-514. Version v15.1.5 of IBM XL Fortran compiler was used to
compile the sources.

The size of the problems in the NPB benchmarking suite is predefined by the developers. The
example uses the benchmarks of class C. The source code of the NPB suite was not
changed. The code generation was controlled by setting compilation parameters in a
make.def file, as shown in Example 4-1.

Example 4-1 NPB: A sample make.def file for the -O3 parameter set

F77 = xlf_r -qsmp=noauto:omp -qnosave
FLINK = $(F77)
FFLAGS = -O3 -qmaxmem=-1 -qarch=auto -qtune=auto:balanced
FLINKFLAGS = $(FFLAGS)
CC = xlc_r -qsmp=noauto:omp
CLINK = $(CC)
C_LIB = -lm
CFLAGS = $(FFLAGS)
CLINKFLAGS = $(CFLAGS)
UCC = xlc_r
BINDIR = ../O3
RAND = randi8
WTIME = wtime.c
MACHINE = -DIBM

1 The NPB suite was developed by NASA Advanced Supercomputing (NAS) Division. For more information, see
“NAS Parallel Benchmarks” at this website:
http://www.nas.nasa.gov/publications/npb.html

Note: The performance numbers that are shown in this section must not be treated as the
official results. They are provided to demonstrate the possible effect of various
performance tuning techniques on application performance. The results that are obtained
in different hardware and software environments or with other compilation parameters can
vary widely from the numbers that are shown here.
122 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.nas.nasa.gov/publications/npb.html

It is not feasible to cover all compilation parameters, so the tests varied only the level of
optimization. The following parameters were common for all builds:

-qsmp=noauto:omp -qnosave -qmaxmem=-1 -qarch=auto -qtune=auto:balanced

The example considers four sets of compilation parameters. In addition to the previous
compilation parameters, the remaining parameters are listed in Table 4-1. The column Option
set name lists shortcuts that were used to reference each set of compilation parameters that
are presented in the Compilation parameters columns.

Table 4-1 NPB: Compilation parameters used to build the NPB suite executable files

All of the runs were performed with the following environment variables:

export OMP_DYNAMIC="FALSE"
export OMP_SCHEDULE="static"

To establish the affinity of threads, the example used a simple utility program. The source
code for this program is described in 4.3, “Sample code for the construction of thread affinity
strings” on page 145.

4.1.1 Performance effect of a Rational choice of an SMT mode

The POWER8 core can run instructions from up to eight application threads simultaneously.
This capability is known as SMT. The POWER8 architecture supports the following four
multithreading levels:2

� ST (single-thread)3

� SMT2 (two-way multithreading)
� SMT4 (four-way multithreading)
� SMT8 (eight-way multithreading)

The SMT mode, which can be used to obtain the optimal performance, depends on the
characteristics of the application. Compilation parameters and mapping between application
threads and logical processors can also affect the timing.

Option set name Compilation parameters

Varying Common

-O2 -O2 -qsmp=noauto:omp -qnosave -qmaxmem=-1
-qarch=auto -qtune=auto:balanced

-O3 -O3

-O4 -O4

-O5 -O5

Note: In several cases, performance results that are presented deviate significantly from
the general behavior within the same plot. The plot bars with deviations can be ignored
because the tests can experience unusual conditions (operating system jitters, parasitic
external workload, and so on).

2 B. Sinharoy et al, “IBM POWER8 processor core microarchitecture,” IBM J. Res. & Dev., vol. 59, no. 1, Paper 2, pp.
2:1–2:21, Jan./Feb. 2015, http://dx.doi.org/10.1147/JRD.2014.2376112.

3 Single-thread mode is referred sometimes as SMT1.
Chapter 4. Measuring and tuning applications 123

http://dx.doi.org/10.1147/JRD.2014.2376112

Reason behind a conscious choice of an SMT mode
Execution units of a core are shared by all logical processors of a core (two logical processors
in SMT2 mode, four logical processors in SMT4 mode, and eight logical processors in SMT8
mode). Execution units are available with multiple instances (for example, load/store units,
fixed-point units) and single instances (for example, branch execution unit).

In ideal conditions, application threads do not compete for execution units. This configuration
results in each of eight logical processors of a core that is running in SMT8 mode being
almost as fast as a core that is running in ST mode.

Depending on the application threads instruction flow, some execution units become fully
saturated with instructions that come from different threads. As a result, the progress of the
depended instructions is postponed. This postponement limits the overall performance of the
eight logical processors of a core that is running in SMT8 to the performance of a core that is
running in ST mode.

It is also possible for even a single thread to fully saturate resources of a whole core.
Therefore, adding threads to a core can result in performance degradation. For example, see
the performance of mg.C benchmark that is shown in Figure 4-7 on page 128.

Performance effect of SMT mode on NPB benchmarks
The bar charts that are shown in Figure 4-1 on page 125, Figure 4-2 on page 125, Figure 4-3
on page 126, Figure 4-4 on page 127, Figure 4-5 on page 127, Figure 4-6 on page 128,
Figure 4-7 on page 128, Figure 4-8 on page 129, and Figure 4-9 on page 129 show the
performance benefits that come from the IBM Rational® choice of SMT mode for applications
from the NPB suite (bt.C, cg.C, ep.C, ft.C, is.C, lu.C, mg.C, sp.C, and ua.C). The
performance of the applications was measured for each combination of the following options:

� Four sets of compiler parameters, as listed in Table 4-1 on page 123.

� Five core layouts:

– 1, 2, 5, and 10 cores from one socket
– A total of 20 cores from both sockets

The plots are organized according to the following scheme:

� Each figure presents results for a particular benchmark from the NPB suite.

� Each subplot is devoted to a particular set of compiler options.

� The horizontal axis lists core layouts. For example, the third pair (sockets: 1, cores: 5)
designates the benchmarking run where application threads were bound to five cores
within one socket.

� The vertical axis shows the performance gain as measured in percentage relative to a
baseline. As a baseline, we choose an SMT mode that is less favorable for the particular
application.

The results show that the choice of SMT mode affects performance substantially.

Note: Generally, the performance of each logical processor of a core that is running in
SMT2, SMT4, or SMT8 mode is not equivalent to the performance of a core that is running
in ST mode. The performance of each logical processor of a core is influenced by all other
logical processors in a core. The influence comes from the application threads instruction
flow.
124 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Figure 4-1 Performance benefits from the Rational choice of SMT mode for the bt.C benchmark

Figure 4-2 Performance benefits from the Rational choice of SMT mode for the cg.C benchmark
Chapter 4. Measuring and tuning applications 125

Figure 4-3 Performance benefits from the Rational choice of SMT mode for the ep.C benchmark
126 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Figure 4-4 Performance benefits from the Rational choice of SMT mode for the ft.C benchmark

Figure 4-5 Performance benefits from the Rational choice of SMT mode for the is.C benchmark
Chapter 4. Measuring and tuning applications 127

Figure 4-6 Performance benefits from the Rational choice of SMT mode for the lu.C benchmark

Figure 4-7 Performance benefits from the Rational choice of SMT mode for the mg.C benchmark
128 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Figure 4-8 Performance benefits from the Rational choice of SMT mode for the sp.C benchmark

Figure 4-9 Performance benefits from the Rational choice of SMT mode for the ua.C benchmark
Chapter 4. Measuring and tuning applications 129

Choice of SMT mode for computing nodes
Many NPB applications benefit from SMT8 mode. Therefore, from the general system
management perspective, it can be unwise to restrict users to lower SMT values. The
administrator considers the following recommendations:

� Run the system in SMT8 mode
� Use a processor core as a unit of hardware resource allocation4

By using the physical processor as a unit of hardware resource allocation, you ensure that no
other applications use the idle logical processors of a physical core that is assigned to the
user. Before the users run a productive workload, they must execute several benchmarks for
an application of their choice. The benchmarks are necessary to determine a favorable
number of software threads to run at each core. After the value is identified, that number must
be taken into account when users arrange productive workloads.

If possible, recompile the application with the -qtune=pwr8:smtX option of the IBM XL
compiler (where X is 1, 2, 4, or 8, depending on the favorable SMT mode), and repeat the
benchmark.

Reason for MPI applications
The same logic holds for applications that use MPI. For programs that are based on OpenMP,
seek a favorable number of threads to execute on each core. Similarly, for an application that
is created with MPI, find a favorable number of MPI processes to execute on each core.

4.1.2 Effect of optimization options on performance

Various compiler options affect the performance characteristics of produced binary code.
However, not all of the optimization options are equally suited for all types of workloads.
Compilation parameters that result in good performance for one type of application might not
perform equally well for other types of computations. Choose a favorable set of compiler
options that is based on the timing of a particular application.

The bar charts that are shown in Figure 4-10 on page 131, Figure 4-11 on page 132,
Figure 4-12 on page 132, Figure 4-13 on page 133, Figure 4-14 on page 133, Figure 4-15 on
page 134, Figure 4-16 on page 134, Figure 4-17 on page 135, and Figure 4-18 on page 135
compare the performance benefits that come from the rational choice of compiler options for
the same applications from the NPB suite (bt.C, cg.C, ep.C, ft.C, is.C, lu.C, mg.C, sp.C, and
ua.C) that are described in 4.1.1, “Performance effect of a Rational choice of an SMT mode”
on page 123.

Again, the four sets of compiler options considered are listed in Table 4-1 on page 123. The
application threads are bound to 1, 2, 5, or 10 cores of one socket or 20 cores of two sockets.

The organization of the plots is similar to the following scheme that was described in 4.1.1,
“Performance effect of a Rational choice of an SMT mode” on page 123:

� Each figure presents results for a particular benchmark from the NPB suite.

� Each subplot is devoted to a particular SMT mode.

� The horizontal axis lists the number of cores that is used.

4 This recommendation is targeted to applications that are limited by the computing power of a processor only. It
does not account for interaction with the memory subsystem and other devices. At some supercomputing sites and
user environments, it can be reasonable to use a socket or even a server as a unit of hardware resource allocation.
130 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

� The vertical axis shows the performance gain as measured in percentage relative to a
baseline. As a baseline, we chose a compiler option set that is less favorable for the
particular application.

The results show that the Rational choice of a compiler option set substantially affects the
performance for all of the considered NPB applications.

Figure 4-10 Performance gain from the Rational choice of compiler options for the bt.C test
Chapter 4. Measuring and tuning applications 131

Figure 4-11 Performance gain from the Rational choice of compiler options for the cg.C test

Figure 4-12 Performance gain from the Rational choice of compiler options for the ep.C test
132 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Figure 4-13 Performance gain from the Rational choice of compiler options for the ft.C test

Figure 4-14 Performance gain from the Rational choice of compiler options for the is.C test
Chapter 4. Measuring and tuning applications 133

Figure 4-15 Performance gain from the Rational choice of compiler options for the lu.C test

Figure 4-16 Performance gain from the Rational choice of compiler options for the mg.C test
134 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Figure 4-17 Performance gain from the Rational choice of compiler options for the sp.C test

Figure 4-18 Performance gain from the Rational choice of compiler options for the ua.C test
Chapter 4. Measuring and tuning applications 135

4.1.3 Favorable modes and options for applications from the NPB suite

Table 4-2 lists SMT modes and compiler optimization options that are favorable for most of
the runs that are described in 4.1.1, “Performance effect of a Rational choice of an SMT
mode” on page 123 and 4.1.2, “Effect of optimization options on performance” on page 130.
The row headers (ST, SMT2, SMT4, and SMT8) designate SMT modes. The column headers
(-O2, -O3, -O4, and -O5) refer to sets of compiler options that are listed in Table 4-1 on
page 123.

Table 4-2 Favorable modes and options for applications from the NPB suite

Favorable SMT modes can vary from ST to SMT8 and favorable compilation options can vary
from -O2 to -O5.

It is difficult to know before experimenting which SMT mode and which set of compilation
options will be favorable for a user application. Therefore, establish benchmarks before
conducting production runs. For more information, see 4.2, “General methodology of
performance benchmarking” on page 137.

4.1.4 Importance of binding threads to logical processors

The operating system can migrate application threads between logical processors if a user
does not explicitly specify thread affinity. As described in 3.1, “Controlling the running of
multithreaded applications” on page 90, a user can specify the binding of application threads
to a specific group of logical processors. One option for binding threads is to use system calls
in a source code. The other option is to set environment variables that control threads affinity.

For technical computing workloads, you want to ensure that application threads are bound to
logical processors. Thread affinity often helps to take advantage of the POWER architecture
memory hierarchy and reduce the overhead that is related to the migration of threads by an
operating system.

To demonstrate the importance of this technique, the mg.C test from the NPB suite was
chosen as an example. The performance of the mg.C application peaks at SMT1 (see
Table 4-2). For this benchmark, you can expect a penalty if an operating system puts more
than one thread on each core.

Figure 4-19 on page 137 shows the performance improvement that was obtained by binding
application threads to logical processors. The baseline corresponds to runs without affinity.
The bars show the relative gain that was obtained after the assignment of software threads to
hardware threads. As SMT mode increases, the operating system has more freedom in
scheduling threads. As the result, the effect of thread binding becomes more pronounced for
higher values of SMT mode.

-O2 -O3 -O4 -O5

ST — — sp.C mg.C

SMT2 is.C — ft.C, lu.C —

SMT4 — — — bt.C, ua.C

SMT8 — ep.C — cg.C
136 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Figure 4-19 Performance improvement for an application when thread binding is used

4.2 General methodology of performance benchmarking

This section describes how to evaluate the performance of an application on a system with
massively multithreaded processors. It also provides some hints about how to take advantage
of the performance of an application without access to the source code.

This example assumes that the application is thread-parallel and does not use Message
Passing Interface (MPI)5 or general-purpose computing on graphics processing units
(GPGPU)6. However, the generalization of the methodology to a broader set of applications is
relatively straightforward.

For the simplicity of table structure throughout this section, the examples make the following
assumptions about the configuration of a computing server:

� The server is a two-socket system with fully populated memory slots.
� The server has 10 cores per socket (20 cores in total).

The computing server reflects the architecture of the IBM Power Systems S822LC
(8335-GTB) system.

This section also describes performance benchmarking and summarizes the methodology in
a step-by-step instruction form. For more information, see 4.2.11, “Summary” on page 145.

4.2.1 Defining the purpose of performance benchmarking

Before starting a performance benchmarking, it is important to clarify the purpose of this
activity. A clearly defined purpose of the benchmarking is helpful in creating a plan of the
benchmarking and defining success criteria.

5 MPI is a popular message-passing application programmer interface that is used for parallel programming.
6 GPGPU is the use of GPUs for the solution of compute intensive data parallel problems.
Chapter 4. Measuring and tuning applications 137

The purpose of performance benchmarking looks different from each of the following two
points of view:

� Performance benchmarking that is carried out by an application developer.
� Performance benchmarking that is done by an application user or a system administrator.

Benchmarking by application developers
From the perspective of an application developer, the performance benchmarking is part of a
software development process. Application developer uses performance benchmarking in
pursuing the following goals:

� Comparison of a code’s performance with the performance model.

� Identification of bottlenecks in a code that limit its performance (this process is typically
done by using profiling).

� Comparison of the code’s scalability with the scalability model.

� Identification of parts of the code that prevent scaling.

� Tuning the code to specific computer hardware.

A software developer carries out a performance benchmarking of an application to
understand how to improve application performance by changing an algorithm. Performance
benchmarking as it is viewed from an application developer perspective has complex
methodologies. These methodologies are not covered in this publication.

Benchmarking by application users and system administrators
From the perspective of an application user or a system administrator, performance
benchmarking is a necessary step before using an application for production runs on a
computing system that is available for them. Application users and system administrators
make the following assumptions:

� An application will be used on a computing system many times in future.

� It makes sense to invest time into performance benchmarking because the time will be
made up by faster completion of production runs in future.

� Modification of an application source code is out of their scope.

This statement implies that application users and system administrators are limited to the
following choices to tune the performance:

– Different compilers
– Compiler optimization options
– SMT mode
– Number of computing cores
– Runtime system parameters and environment variables
– Operating system parameters

Essentially, applications users and system administrators are interested in how to make an
application solve problems as fast as possible without changing the source code.

System administrators also need performance benchmarking results to help determine
hardware allocation resources when configuring a computing system. For more information,
see “Choice of SMT mode for computing nodes” on page 130.

This book considers performance benchmarking from the perspective of an application user
or a system administrator.
138 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

4.2.2 Benchmarking plans

Complete the following steps for your benchmarking project:

1. A kick-off planning session with the experts.
2. Workshop with the experts.
3. Benchmarking.
4. Session to discuss the intermediate results with the experts.
5. Benchmarking.
6. Preparation of the benchmarking report.
7. Session to discuss the final results with the experts.

You also must prepare the following lists:

� Applications to be benchmarked
� Persons who are responsible for specific applications

Planning and discussion sessions are ideally face-to-face meetings between the
benchmarking team and POWER architecture professionals. A workshop with the POWER
architecture experts is a form of knowledge transfer educational activity with hands-on
sessions.

The specific technical steps that you perform when benchmarking individual applications are
described next.

For an example of the technical part of a plan, see 4.2.11, “Summary” on page 145.

4.2.3 Defining the performance metric and constraints

The performance metric provides a measurable indicator of application performance.
Essentially, a performance metric is a number that can be obtained in a fully automated
manner. The most commonly used performance metrics include the following examples:

� Time of application execution
� Number of operations performed by an application in a unit of time

Some applications impose constraints in addition to the performance metric. Typically, the
violation of a constraint means that running the application in such conditions is
unacceptable. Constraints include the following examples:

� Latency of individual operations (for example, execution of a specific ratio of operations
takes no longer than a specific time threshold).

� Quality metric of the results produced by the application does not fall below a specified
threshold (for example, a video surveillance system drops no more than a specified
number of video frames in a unit of time).

4.2.4 Defining the success criteria

Satisfying a success criteria is a formal reason to finalize performance benchmarking.
Usually, success criteria is based on the performance results. Typically, success criteria is a
numeric threshold that provides a definition of an acceptable performance (see 4.2.3,
“Defining the performance metric and constraints” on page 139).

The performance benchmarking can result in the following outcomes:

� The success criteria are satisfied. This result means that the process of performance
tuning can be finalized.
Chapter 4. Measuring and tuning applications 139

� The application does not scale as expected (see “Probing the scalability” on page 142).
This result indicates that you must reconsider the success criteria.

� The success criteria are not satisfied. Use the following techniques to solve the problem:

– Discuss the performance tuning options that you tried over and the results you
obtained with the experts. For this purpose, keep a verbose benchmarking log. For
more information, see “Keeping the log of benchmarking” on page 140.

– Engage the experts to perform deep performance analysis.

– Seek help of software developers to modify the source code.

Performance of a logical processor versus performance of a core
It is important to understand that in the most cases, there is no sense in defining success
criteria based on the performance of a logical processor of a core taken in isolation. As
described in 4.1.1, “Performance effect of a Rational choice of an SMT mode” on page 123,
the POWER8 core can run instructions from multiple application threads simultaneously.
Therefore, the whole core is a minimal entity of reasoning about performance. For more
information, see “Choice of SMT mode for computing nodes” on page 130.

Aggregated performance statistics for poorly scalable applications
Similarly, some applications are not designed to scale up to a whole computing server. For
example, an application can violate constraints under a heavy load (see 4.2.3, “Defining the
performance metric and constraints” on page 139). In such situation, it makes sense to run
several instances of an application on a computing node and collect aggregated performance
statistics. This technique allows you to evaluate performance of a whole server that is running
a particular workload.

4.2.5 Correctness and determinacy

Before you start performance benchmarking, check that the application works correctly and
produces deterministic results. If the application produces undeterministic results by design
(for example, the application implements the Monte-Carlo method or other stochastic
approach), you have at least two options:

� Modify the application by making its output deterministic (for example, fix the seed of a
random number generator).

� Develop a reliable approach for measuring performance of an undeterministic application
(this process can require many more runs than for a deterministic application).

During each stage of the performance tuning, verify that the application still works correctly
and produces deterministic results (for example, by using regression testing).

4.2.6 Keeping the log of benchmarking

Preserve the history and output of all commands that are used in the preparation of the
benchmark and during the benchmark. This log includes the following files:

� Makefiles
� Files with the output of the make command
� Benchmarking scripts
� Files with the output of benchmarking scripts
� Files with the output of individual benchmarking runs
140 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

A benchmarking script is a shell script that includes the following commands:

� A series of commands that capture the information about the execution environment
� A sequence of commands that run applications under various conditions

Example 4-2 shows several commands that you might want to include in the beginning of a
benchmarking script to capture the information about the execution environment.

Example 4-2 Example of the beginning of a benchmarking script

#!/bin/bash -x
uname -a
tail /proc/cpuinfo
numactl -H
ppc64_cpu --smt
ppc64_cpu --cores-present
ppc64_cpu --cores-on
gcc --version
xlf -qversion
env
export OMP_DISPLAY_ENV="VERBOSE"

Typically, a benchmarking script combines multiple benchmarking runs in a form of loops over
a number of sockets, cores, and SMT modes. By embedding the commands that you use to
execute an application into a script, you keep the list of commands along with their outputs.

Running a benchmarking script
If you do not use a job scheduler to submit a benchmarking script, run a benchmarking script
inside a session that is created by using the screen command. Doing so gives protection
against network connection issues and helps to keep applications running, even during a
network failure.

One option to run a benchmarking script is to execute the following command:

./benchmarking_script_name.sh 2>&1 | tee specific_benchmarking_scenario.log

This command combines the standard output and the standard error streams, whereas the
tee command writes the combined stream to a workstation and a specified file.

Choosing names for log files
It is helpful to write the output of individual benchmarking runs to separate files with
well-defined descriptive names. For example, we found the following format useful for the
purposes of the benchmarking runs that are described in 4.1, “Effects of basic performance
tuning techniques” on page 122:

$APP_NAME.t$NUM_SMT_THREADS.c$NUM_CORES.s$NUM_SOCKETS.log

This format facilitated the postprocessing of the benchmarking logs by using the sed
command.
Chapter 4. Measuring and tuning applications 141

4.2.7 Probing the scalability

Probing the scalability is a necessary step of the performance benchmarking for the following
reasons:

� It is the way to evaluate the behavior of an application when the number of computing
resources increases.

� It helps to determine the favorable number of processor cores to use for production runs.

To be concise, the ultimate purpose of probing the scalability is to check whether an
application is scalable.

Before performing runs, the user answers the following questions:

� Does the application has some specific limits on the number of logical processors it can
use?

(For example, some applications are designed to run with the number of logical
processors that is a power of two only: 1, 2, 4, 8, and so on).

� Is the scalability model of the application available?

The model can be pure analytical (for example, the application vendor can claim a linear
scalability) or the model can be based on the results of previous runs.

� What is the scalability criteria for the application? That is, what is the numeric threshold
that defines the “yes” or “no” answer to the following formal question: “Given N > Nbase
logical processors, are you ready to agree that the application is scalable on N logical
processors in respect to Nbase logical processors?”

If available, the scalability model helps you to choose the scalability criteria.

The next step is to compile the application with a basic optimization level. For example, you
can use the following options:

� -O3 -qstrict (with IBM XL Compilers)
� -O3 (with GCC7 and IBM Advance Toolchain)

For more information about IBM XL Compilers, GNU Compiler Collection (GCC), and IBM
Advance Toolchain, see 8.7, “IBM XL compilers, GCC, and Advance Toolchain” on page 355
and 2.1, “Compiler options” on page 24.

For scalability probing, choose the size of a problem to be large enough to fit the memory of a
server. In contrast, solving a problem of a small size often is a waste of computing cores. If
you must process multiple small problems, run multiple one-core tasks simultaneously on one
node.

When you decide on a problem size, run the application in ST mode with different number of
logical processors. Complete the Performance, Meets the scalability model? (yes/no), and
Meets the scalability criteria? (yes/no) rows, as shown in Table 4-3 on page 143.

Note: In the performance benchmarking within a one-node system, the scalability is
probed only in a strong sense, also known as a speed-up metric. This metric is obtained by
fixing the size of a problem and varying the number of processor cores. For a multi-node
system, the complimentary metric is a scalability in a weak sense. It is obtained by
measuring performance when the amount of computing work per node is fixed.

7 GNU Compiler Collection (GCC) contains various compilers, including C, C++, and Fortran compilers.
142 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Table 4-3 Scalability probing measurements table

When probing the scalability, vary the number of cores and run each core in ST mode.
Therefore, the total number of threads used can be equal to the number of cores.

Depending on the results of the benchmarking, you end up with one of the following
outcomes:

� The application is scalable up to 20 cores.
� The application is scalable within the socket (up to 10 cores).
� The application is not scalable within the socket.

If the scalability of the application meets your expectations, proceed to the next step and
evaluate the performance by using the maximum number of cores that you determined in this
section.

If the application does not meet your scalability expectations, you first clarify the reasons of
that behavior and repeat probing the scalability until satisfied. Only after that process can you
proceed to the next step.

4.2.8 Evaluation of performance on a favorable number of cores

The performance of an application heavily depends on the choice of SMT mode and
compilation modes. For more information, see “” on page 131. It is difficult to know
beforehand which set of compiler options and number of hardware threads per core can be a
favorable choice for an application. Therefore, you must run the application with several
compilation options or SMT modes and select the most appropriate combination.

In 4.2.7, “Probing the scalability” on page 142, the maximum reasonable number of cores to
be used by an application was determined. The next step is to use that number of cores to run
the application with different sets of compiler options and SMT modes.

You must try each of four SMT modes for several sets of compiler options. If you are limited
on time, try fewer sets of compiler options, but go through all SMT modes. Enter the results of
your performance measurements in Table 4-4 on page 144 (the table is similar to the
Table 4-2 on page 136). Your actual version of a table can include other columns and different
headings of the columns, depending on the sets of compiler options you choose.

Number of cores 1 2 3 … 10 12 14 16 18 20

Number of sockets 1 1 1 … 1 2 2 2 2 2

Number of cores per socket 1 2 3 … 10 6 7 8 9 10

Performance

Meets the scalability model? (yes/no) —

Meets the scalability criteria? (yes/no) —

Note: Remember to bind application threads to logical processors. Failing to do so
typically ends up in worse results (see 4.1.4, “Importance of binding threads to logical
processors” on page 136).
Chapter 4. Measuring and tuning applications 143

Table 4-4 Performance measurements results table

Optionally, you can repeat the step that is described in 4.2.7, “Probing the scalability” on
page 142 with the compiler options that give the highest performance.

4.2.9 Evaluation of scalability

The core of the IBM POWER8 chip is a multithreaded processor. Therefore, measuring the
performance of a single application thread is not recommended. More meaning in application
performance is available when a whole core is used. The application performance depends
on the SMT mode of a core as described in “Reason behind a conscious choice of an SMT
mode” on page 124.

Before the scalability of an application is evaluated, select a favorable SMT mode and
compilation options, as described in 4.2.8, “Evaluation of performance on a favorable number
of cores” on page 143. Then, use that SMT mode and vary the number of cores to get the
scalability characteristics. Enter the results of the measurements in the Performance row of
Table 4-5 (the table is similar to Table 4-3 on page 143). Compute values for the Speed-up
row based on the performance results. The number of columns in your version of the table
depends on the maximum number of cores you obtained when you probed the scalability. For
more information, see 4.2.7, “Probing the scalability” on page 142.

Table 4-5 Scalability evaluation results table

4.2.10 Conclusions

As a result of the benchmark, you have the following information for each application:

� The level of the application scalability in ST mode.
� A favorable SMT mode and compiler options that delivered the highest performance.
� Scalability characteristics in the favorable SMT mode.

-O2 -O3 -O4 -O5

ST

SMT2

SMT4

SMT8

Number of cores 1 2 3 … 10 12 14 16 18 20

Number of sockets 1 1 1 … 1 2 2 2 2 2

Number of cores per socket 1 2 3 … 10 6 7 8 9 10

Performance

Speed-up —

Note: When we probed the scalability, we were running the cores in ST mode. In the
scalability evaluation step, we ran the cores in an SMT mode that we determined in the
performance evaluation step. The total number of threads in each run of the scalability
evaluation is equal to the number of used cores multiplied by the number of threads per
core in a chosen SMT mode.
144 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

4.2.11 Summary

The process that is used to facilitate your benchmarking includes the following steps:

1. Define the purpose of the benchmarking (see “Defining the purpose of performance
benchmarking” on page 137) and choose which of the following options you will use for
performance tuning:

– Choice between different compilers
– Choice of compiler optimization options
– Choice of an SMT mode
– Choice of the number of computing cores
– Choice of runtime system parameters and environment variables
– Choice of operating system parameters

2. Create the benchmarking plan (see “Benchmarking plans” on page 139).

3. Define the performance metric (see “Defining the performance metric and constraints” on
page 139).

4. Define the success criteria (see “Defining the success criteria” on page 139).

5. Verify that the application works correctly (see “Correctness and determinacy” on
page 140).

6. Probe the scalability (see “Probing the scalability” on page 142) to determine the limits of
the application scalability:

a. Complete the questionnaire on a scalability model and scalability criteria (see
page 142).

b. Complete a results table (see Table 4-3 on page 143).

7. Obtain favorable SMT mode and compilation options (see “Evaluation of performance on a
favorable number of cores” on page 143) by completing Table 4-4 on page 144.

8. Evaluate the scalability (see “Evaluation of scalability” on page 144) by completing
Table 4-5 on page 144.

4.3 Sample code for the construction of thread affinity strings

Example 4-3 provides the source code t_map.c for the program t_map. You can use this small
utility to construct a text string that describes the mapping of OpenMP threads of an
application to logical processors. Text strings of this kind are intended to be assigned to
OpenMP thread affinity environment variables.

Example 4-3 Source code t_map.c (in C programming language) for the program t_map

1. #include <stdio.h>
2. #include <stdlib.h>
3.
4. #define MAX_TPC 8 // 8 is for the POWER8 processor (max SMT mode is SMT8)
5. #define MAX_CPS 10 // 8 is for a 16-core system, 10 is for a 20-core system
6. #define MAX_SPS 2
7. #define MAX_THR (MAX_TPC * MAX_CPS * MAX_SPS)
8.
9. void Print_Map(int sps, int cps, int tpc, int base) {
10. const int maps[MAX_TPC][MAX_TPC] = {
11. { 0 },
12. { 0, 4 },
Chapter 4. Measuring and tuning applications 145

13. { 0, 2, 4 },
14. { 0, 2, 4, 6 },
15. { 0, 1, 2, 4, 6 },
16. { 0, 1, 2, 4, 5, 6 },
17. { 0, 1, 2, 3, 4, 5, 6 },
18. { 0, 1, 2, 3, 4, 5, 6, 7 }
19. };
20.
21. const int sep = ',';
22.
23. int thread, core, socket;
24.
25. int tot = sps * cps * tpc;
26. int cur = 0;
27.
28. for (socket = 0; socket < sps; ++socket) {
29. for (core = 0; core < cps; ++core) {
30. for (thread = 0; thread < tpc; ++thread) {
31. int shift = socket * MAX_CPS * MAX_TPC +
32. core * MAX_TPC;
33. shift += base;
34. ++cur;
35. int c = (cur != tot) ? sep : '\n';
36. printf("%d%c", shift + maps[tpc-1][thread], c);
37. }
38. }
39. }
40.}
41.
42.void Print_Usage(char **argv) {
43. fprintf(stderr, "Usage: %s "
44. "threads_per_core=[1-%d] "
45. "cores_per_socket=[1-%d] "
46. "sockets_per_system=[1-%d] "
47. "base_thread=[0-%d]\n",
48. argv[0], MAX_TPC, MAX_CPS, MAX_SPS, MAX_THR-1);
49.}
50.
51.int main(int argc, char **argv) {
52. const int num_args = 4;
53.
54. if (argc != num_args+1) {
55. fprintf(stderr, "Invalid number of arguments (%d). Expecting %d "
56. "arguments.\n", argc-1, num_args);
57. Print_Usage(argv);
58. exit(EXIT_FAILURE);
59. }
60.
61. int tpc = atoi(argv[1]);
62. int cps = atoi(argv[2]);
63. int sps = atoi(argv[3]);
64. int base = atoi(argv[4]);
65.
66. if (tpc < 1 || tpc > MAX_TPC ||
67. cps < 1 || cps > MAX_CPS ||
146 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

68. sps < 1 || sps > MAX_SPS) {
69. fprintf(stderr, "Invalid value(s) specified in the command line\n");
70. Print_Usage(argv);
71. exit(EXIT_FAILURE);
72. }
73.
74. int tot = sps * cps * tpc;
75.
76. if (base < 0 || base+tot-1 >= MAX_THR) {
77. fprintf(stderr, "Invalid value specified for the base thread (%d). "
78. "Expected [0, %d]\n", base, MAX_THR-tot);
79. Print_Usage(argv);
80. exit(EXIT_FAILURE);
81. }
82.
83. Print_Map(sps, cps, tpc, base);
84.
85. return EXIT_SUCCESS;
86.}

To use the tool, you must compile the code first by using the C compiler of your choice. For
example, run the following command with gcc compiler:

$ gcc -o t_map t_map.c

If you run the tool without any arguments, you are provided a brief hint about the usage, as
shown in the following example:

$./t_map
Invalid number of arguments (0). Expecting 4 arguments.
Usage: ./t_map threads_per_core=[1-8] cores_per_socket=[1-10]
sockets_per_system=[1-2] base_thread=[0-159]

The utility needs you to specify the following amounts and locations of resources that you
want to use:

� Number of threads per core
� Number of cores per socket
� Number of sockets
� The initial logical processor number (counting from zero)

Note: Example 4-3 on page 145 lists a revised version of the code that originally appeared
in Appendix D of Implementing an IBM High-Performance Computing Solution on IBM
POWER8, SG24-8263. The code was adjusted to better fit the architecture of the IBM
Power System S822LC servers.
Chapter 4. Measuring and tuning applications 147

Example 4-4 shows how to generate a thread mapping string for an OpenMP application that
uses the following resources of a 20-core IBM Power Systems S822LC server:

� Twenty OpenMP threads in total
� Two threads on each core
� Ten cores on each socket
� Only the second socket

Example 4-4 Sample command for the generation of a thread mapping string

$./t_map 2 10 1 80
80,84,88,92,96,100,104,108,112,116,120,124,128,132,136,140,144,148,152,156

The runtime system of an OpenMP application obtains the thread mapping string from an
environment variable. You must use different OpenMP thread affinity environment variables,
depending on the compiler you use for your OpenMP application. Table 4-6 lists references
for OpenMP thread affinity environment variables.

Table 4-6 OpenMP thread affinity environment variables

The information in Table 4-6 also applies to the OpenMP applications that are built with the
derivatives of GCC and IBM XL compilers (for example, MPI wrappers).

Example 4-5 shows how to assign values to OpenMP thread environment variables to
implement the scenario in Example 4-4.

Example 4-5 Assigning values to the OpenMP thread affinity environment variables

$ export XLSMPOPTS=procs="`t_map 2 10 1 80`"
$ echo $XLSMPOPTS
procs=80,84,88,92,96,100,104,108,112,116,120,124,128,132,136,140,144,148,152,156
$ export GOMP_CPU_AFFINITY="`t_map 2 10 1 80`"
$ echo $GOMP_CPU_AFFINITY
80,84,88,92,96,100,104,108,112,116,120,124,128,132,136,140,144,148,152,156

Example 4-5 shows the value of the environment variables with the echo command to
demonstrate the result of the assignment. This command does not affect the affinity.

Compiler family Some compilers from the
compiler family

OpenMP thread affinity
environment variable

GNU Compiler Collection
(GCC)

gcc
g++
gfortran

GOMP_CPU_AFFINITY

IBM XL compilers xlc_r
xlc++_r
xlf2008_r

XLSMPOPTS, suboption procs

Note: Example 4-5 implies that the t_map program is in your PATH. You need to specify the
full path to the tool if the operating system does not find it in your PATH.
148 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

4.4 ESSL performance results

The ESSL library includes the implementation of the famous DGEMM routine, which is used
in a large spectrum of libraries, benchmarks, and other ESSL routines. Therefore, its
performance is significant.

DGEMM implements the following formula:

where, alpha and beta are real scalar values; and A, B, and C are matrixes of conforming
shape.

Example 4-6 features a sample Fortran program with multiple calls of DGEMM for different
sizes of input matrixes.

Example 4-6 ESSL Fortran example source code dgemm_sample.f

1. program dgemm_sample
2. implicit none
3.
4. real*8 diff
5. integer n, m, k
6. integer maxn
7. integer step
8. integer i
9. real*8,allocatable :: a(:,:), b(:,:), c(:,:)
10. real*8,allocatable :: at(:,:), bt(:,:), ct(:,:)
11. real*8 rmin
12. real*8 seed1, seed2, seed3
13. real*8 dtime, mflop
14. real*8 flop
15. integer tdummy, tnull, tstart, tend, trate, tmax
16.
17. maxn = 20000
18. step = 1000
19.
20. seed1 = 5.0d0
21. seed2 = 7.0d0
22. seed3 = 9.0d0
23. rmin = -0.5d0
24.
25. call system_clock(tdummy,trate,tmax)
26. call system_clock(tstart,trate,tmax)
27. call system_clock(tend,trate,tmax)
28. tnull = tend - tstart
29.
30. allocate(at(maxn, maxn))
31. allocate(bt(maxn, maxn))
32. allocate(ct(maxn, maxn))
33. allocate(a(maxn, maxn))
34. allocate(b(maxn, maxn))
35. allocate(c(maxn, maxn))
36.
37. call durand(seed1, maxn*maxn, at)

C α A B⋅ β C+=
Chapter 4. Measuring and tuning applications 149

38. call dscal(maxn*maxn, 1.0d0, at, 1)
39. call daxpy(maxn*maxn, 1.0d0, rmin, 0, at, 1)
40.
41. call durand(seed2, maxn*maxn, bt)
42. call dscal(maxn*maxn, 1.0d0, bt, 1)
43. call daxpy(maxn*maxn, 1.0d0, rmin, 0, bt, 1)
44.
45. call durand(seed3, maxn*maxn, ct)
46. call dscal(maxn*maxn, 1.0d0, ct, 1)
47. call daxpy(maxn*maxn, 1.0d0, rmin, 0, ct, 1)
48.
49. do i = 1, maxn/step
50. n = i*step
51. m = n
52. k = n
53.
54. flop = dfloat(n)*dfloat(m)*(2.0d0*(dfloat(k)-1.0d0))
55.
56. call dcopy(n*k, at, 1, a, 1)
57. call dcopy(k*m, bt, 1, b, 1)
58. call dcopy(n*m, ct, 1, c, 1)
59.
60. call system_clock(tstart,trate,tmax)
61. call dgemm('N','N',m,n,k,1.0d0,a,n,b,k,1.0d0,c,n);
62. call system_clock(tend,trate,tmax)
63.
64. dtime = dfloat(tend-tstart)/dfloat(trate)
65. mflop = flop/dtime/1000000.0d0
66.
67. write(*,1000) n, dtime, mflop
68.
69. enddo
70.
71. 1000 format(I6,1X,F10.4,1X,F14.2)
72.
73. end program dgemm_sample

The use of the commands that are shown Example 4-7 compile run this program by using
different types of ESSL libraries (serial, SMP, and SMP CUDA). For SMP runs, it uses 20
SMP threads with each thread bound to a different POWER8 physical core.

Example 4-7 Compilation and execution of dgemm_sample.f

echo "Serial run"
xlf_r -O3 -qnosave dgemm_sample.f -lessl -o dgemm_fserial
./dgemm_fserial

echo "SMP run"
export
XLSMPOPTS=parthds=20:spins=0:yields=0:PROCS=0,8,16,24,32,40,48,56,64,72,80,88,96,1
04,112,120,128,136,144,152
xlf_r -O3 -qnosave -qsmp dgemm_sample.f -lesslsmp -o dgemm_fsmp
./dgemm_fsmp

echo "SMP CUDA run with 4 GPUs hybrid mode"
150 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

xlf_r -O3 -qnosave -qsmp dgemm_sample.f -lesslsmpcuda -lcublas -lcudart
-L/usr/local/cuda/lib64 -R/usr/local/cuda/lib64 -o dgemm_fcuda
./dgemm_fcuda

echo "SMP CUDA run with 4 GPUs non-hybrid mode"
export ESSL_CUDA_HYBRID=no
./dgemm_fcuda

echo "SMP CUDA run with 3 GPUs (1st, 2nd, 3rd) hybrid mode"
export ESSL_CUDA_HYBRID=yes
export CUDA_VISIBLE_DEVICES=0,1,2
./dgemm_fcuda

echo "SMP CUDA run with 3 GPUs (1st, 2nd, 3rd) non-hybrid mode"
export ESSL_CUDA_HYBRID=no
./dgemm_fcuda

echo "SMP CUDA run with 2 GPUs (1st, 2nd) hybrid mode"
export ESSL_CUDA_HYBRID=yes
export CUDA_VISIBLE_DEVICES=0,1
./dgemm_fcuda

echo "SMP CUDA run with 2 GPUs (1st, 2nd) non-hybrid mode"
export ESSL_CUDA_HYBRID=no
./dgemm_fcuda

echo "SMP CUDA run with 2 GPUs (2nd, 3rd) hybrid mode"
export ESSL_CUDA_HYBRID=yes
export CUDA_VISIBLE_DEVICES=1,2
./dgemm_fcuda

echo "SMP CUDA run with 2 GPUs (2nd, 3rd) non-hybrid mode"
export ESSL_CUDA_HYBRID=no
./dgemm_fcuda

echo "SMP CUDA run with 1 GPU (1st) hybrid mode"
export ESSL_CUDA_HYBRID=yes
export CUDA_VISIBLE_DEVICES=0
./dgemm_fcuda

echo "SMP CUDA run with 1 GPU (1st) non-hybrid mode"
export ESSL_CUDA_HYBRID=no
./dgemm_fcuda

echo "SMP CUDA run with 1 GPU (4th) hybrid mode"
export ESSL_CUDA_HYBRID=yes
export CUDA_VISIBLE_DEVICES=3
./dgemm_fcuda

echo "SMP CUDA run with 1 GPU (4th) non-hybrid mode"
export ESSL_CUDA_HYBRID=no
./dgemm_fcuda
Chapter 4. Measuring and tuning applications 151

Figure 4-20 shows the dependence of performance in MFlops to size of matrixes for different
calls from Example 4-6 on page 149.

Figure 4-20 DGEMM performance results for different type of ESSL library

The chart shows that the GPU gives advantage in performance starting from the 3000 - 5000
problem size. A smaller size is not enough to run the computation in the NVIDIA (by using
GPU) card, and it is better to run the computation run in the CPU by using the ESSL SMP
library.
152 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Another conclusion from these performance results is to use hybrid calls of the ESSL SMP
CUDA library for large problem sizes, especially for runs with one GPU where improvement of
performance is about 20%. You can look closer at performance of one GPU case in
Figure 4-21, and can compare runs with different GPUs in the system.

Figure 4-21 ESSL SMP CUDA runs with one GPU

The first GPU has slightly better results than the fourth GPU. It is possible because these
GPUs connected to different NUMA nodes and connection delays can occur. Run your
program on different GPUs to find the environment with the best performance results.
Chapter 4. Measuring and tuning applications 153

Figure 4-22 shows the performance chart for different combinations of two GPUs calls.

Figure 4-22 ESSL SMP CUDA runs with two GPUs

4.5 GPU tuning

This section explains how to overcome performance degradation because of the Power Cap
Limit that is featured in the NVIDIA GPU. Also, it shows how to manage shared access to
GPUs by multi-process applications through Multi-Process Service (MPS).

4.5.1 Power Cap Limit

While running your applications, the Power Cap Limit can exceed the Software Power Cap
Limit of the NVIDIA GPU cards. If this problem occurs, performance is degraded because the
frequency of the GPU clock is reduced because the GPU is using too much power.

Note: Performance results can have drops because other jobs are running in the system at
the same time.

Attention: This section describes Tesla K80 GPU features. These features are not used
on Pascal P100. However, this section remains as part of this book for the reader that still
owns a K80 GPU.
154 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

To adjust the Power Cap Limit and check how performance looks after this adjustment, you
need to make following checks:

1. Check the current, default, and maximum power limits by using the following command:

nvidia-smi -q | grep 'Power Limit'

Example 4-8 contains output for the example NVIDIA Tesla K80 after execution of this
command.

Example 4-8 NVIDIA Tesla K80 Power limits by default

Power Limit : 149.00 W
Default Power Limit : 149.00 W
Enforced Power Limit : 149.00 W
Min Power Limit : 100.00 W
Max Power Limit : 175.00 W
Power Limit : 149.00 W
Default Power Limit : 149.00 W
Enforced Power Limit : 149.00 W
Min Power Limit : 100.00 W
Max Power Limit : 175.00 W
Power Limit : 149.00 W
Default Power Limit : 149.00 W
Enforced Power Limit : 149.00 W
Min Power Limit : 100.00 W
Max Power Limit : 175.00 W
Power Limit : 149.00 W
Default Power Limit : 149.00 W
Enforced Power Limit : 149.00 W
Min Power Limit : 100.00 W
Max Power Limit : 175.00 W

2. Set persistence to the following settings:

nvidia-smi -pm 1

3. Increase the Power Cap limit to, for example, to 175 watts:

nvidia-smi -pl 175

You can check the limits again after these three steps are completed by using the command
from the first step, as shown in Example 4-9.

Example 4-9 NVIDIA Tesla K80 Power limits after changes

Power Limit : 175.00 W
Default Power Limit : 149.00 W
Enforced Power Limit : 175.00 W
Min Power Limit : 100.00 W
Max Power Limit : 175.00 W
Power Limit : 175.00 W
Default Power Limit : 149.00 W
Enforced Power Limit : 175.00 W
Min Power Limit : 100.00 W
Max Power Limit : 175.00 W
Power Limit : 175.00 W
Default Power Limit : 149.00 W
Enforced Power Limit : 175.00 W
Min Power Limit : 100.00 W
Chapter 4. Measuring and tuning applications 155

Max Power Limit : 175.00 W
Power Limit : 175.00 W
Default Power Limit : 149.00 W
Enforced Power Limit : 175.00 W
Min Power Limit : 100.00 W
Max Power Limit : 175.00 W

Example 2-8 on page 43 (default) and Example 2-9 on page 45 (adjusted Power Cap Limit)
show runs of sample ESSL SMP CUDA program. This technique gives performance
improvements of approximately 2.5 times for this case.

4.5.2 CUDA Multi-Process Service

MPS is client/server runtime implementation of the CUDA API that helps multiple CUDA
processes to share GPUs. MPS takes advantage of parallelism between MPI tasks to
improve GPU utilization.

MPS contains the following components:

� Control Daemon Process

Coordinates connections between servers and clients, and starts and stops server.

� Client Runtime

Any CUDA application can use the MPS client run time from the CUDA driver library.

� Server Process

This connection is the shared clients’ shared connection to the GPU and provides
concurrency between clients.

MPS is recommended for use with jobs that do not generate enough work for GPUs. If you
have multiple runs at the same time, MPS helps to balance the workload of the GPU and
increases its utilization.

Also, MPI programs that have different MPI-tasks but share GPU can see performance
improvements by using MPS to control access to the GPU between tasks.

A recommendation is to use MPS with the EXCLUSIVE_PROCESS mode to be sure that only
the MPS server runs on GPUs. Other compute modes, as described in 6.4.3, “Compute
modes” on page 308, are not recommended or unsupported.

Note: You must set the Power Cap Limit and persistence after each system restart.

Note: The MPS Server supports up to 16 client CUDA contexts. These contexts can be
distributed over up to 16 processes.
156 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

The CUDA program works by using MPS if the MPS control daemon runs in the system. The
program at start attempts to connect to the MPS control daemon, which creates an MPS
server or reuses a server if it has the same user ID as the user who started the job. Therefore,
each user has its own MPS server.

The MPS server creates the shared GPU context for the different jobs in the system,
manages its clients, and calls to GPU on behalf of them. An overview of this process is shown
in Figure 4-23.

Figure 4-23 NVIDIA Multi-Process Service

To run MPS, you need to run the following commands, as root:

1. (This step is optional.) Set environment variable CUDA_VISIBLE_DEVICES to inform the
system which GPUs will be used. To use all GPUs start from the second step, issue the
following command:

export CUDA_VISIBLE_DEVICES=0,1 #Use only first and second GPUs

2. Change the compute mode for all GPUs or to specific GPUs, which are chosen in the first
step:

nvidia-smi -i 0 -c EXCLUSIVE_PROCESS
nvidia-smi -i 1 -c EXCLUSIVE_PROCESS

3. Start the daemon:

nvidia-cuda-mps-control -d

To stop the MPS daemon, run the following command as root:

echo quit | nvidia-cuda-mps-control
Chapter 4. Measuring and tuning applications 157

Example 4-10 shows the output after the execution starts and stops steps in the example
system.

Example 4-10 Start and stop commands of the MPS for 4 GPUs

$ nvidia-smi -i 0 -c EXCLUSIVE_PROCESS
Set compute mode to EXCLUSIVE_PROCESS for GPU 0000:03:00.0.
All done.
$ nvidia-smi -i 1 -c EXCLUSIVE_PROCESS
Set compute mode to EXCLUSIVE_PROCESS for GPU 0000:04:00.0.
All done.
$ nvidia-smi -i 2 -c EXCLUSIVE_PROCESS
Set compute mode to EXCLUSIVE_PROCESS for GPU 0002:03:00.0.
All done.
$ nvidia-smi -i 3 -c EXCLUSIVE_PROCESS
Set compute mode to EXCLUSIVE_PROCESS for GPU 0002:04:00.0.
All done.
$ nvidia-cuda-mps-control -d
$ echo quit | nvidia-cuda-mps-control

If the system has running jobs, running the nvidia-smi command provides output similar to
the output that is shown in Example 4-11.

Example 4-11 nvidia-smi output for system with MPS

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 0 23715 C nvidia-cuda-mps-server 89MiB |
| 1 23715 C nvidia-cuda-mps-server 89MiB |
| 2 23715 C nvidia-cuda-mps-server 89MiB |
| 3 23715 C nvidia-cuda-mps-server 89MiB |
+---+

For more information about the CUDA MPS, see the Multi-Process Service documentation
from NVIDIA.
158 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

4.6 Application development and tuning tools

Many tools for parallel program development and tuning are available for the cluster
environment that is described in this book. Because different development models are
allowed, more than one tool is often needed to develop the application.

This section describes some tools that were developed by IBM, and other tools that are useful
but are maintained by third-party companies or open source communities.

Table 4-7 lists the tools and development models.

Table 4-7 Tools for development and tuning of parallel applications

4.6.1 Parallel Performance Toolkit

The IBM Parallel Performance Toolkit v2.3 provides a set of tools (see Table 4-7) and libraries
to help during the development of applications that are written in C, C++, or Fortran by using
pure MPI or hybrid with OpenMP and CUDA.

Development model Provider Tool

MPI Parallel Performance Toolkit Call graph analysis

I/O Profiling (MIO)

MPI Profiling

Hardware Performance Monitor
(HPM)

RogueWave Software TotalView

Allinea DDT

Hybrid of MPI and OpenMP Parallel Performance Toolkit OpenMP profiling

CUDA CUDA Toolkit CUDA-MEMCHECK

CUDA Debugger

nvprof

Nsight Eclipse Edition

Hybrid of MPI and CUDA Parallel Performance Toolkit GPU Performance Monitor
(GPU)

MPI, OpenMP, PAMI,
OpenSHMEM

Eclipse Parallel Tools Platform
(PTP)

Integrated development
environment (IDE)

Note: The IBM Parallel Environment Developer Edition (PE DE) is branded to Parallel
Performance Toolkit since version 2.3. Although it is renamed, most of components and
usage documentation that is available in other IBM Redbooks publications and the IBM
Knowledge Center can be up-to-date with this new version.
Chapter 4. Measuring and tuning applications 159

This toolkit encompassed the following main components:

� Parallel Performance Toolkit: Provides back-end runtime and development libraries and
command-line tools.

� hpctView: Provides a GUI front end to the Parallel Performance Toolkit. Also, hpctView
plug-ins to Eclipse for Parallel Application Developers (PTP) are available.

The fluxogram (see Figure 4-24) sees the analysis cycle of a parallel application by using the
toolkit. As general rule, it evolves in the following phases:

� Instrument: An application executable file is designed to use a specific tool of the HPC
Toolkit.

� Profile: Run the application to record execution data.

� Visualize: Visualize the resulting profile by using command-line or GUI (hpctView) tool.

Figure 4-24 Fluxogram shows how to use IBM Parallel Performance Toolkit

Instrumentation is an optional step for some tools. If you need a fine-grained collection of
runtime information, use any of the following instrument mechanisms that are provided:

� Binary instrumentation: Uses the hpctInst command or hpcView (GUI) to place probes on
the executable file. It does not require you to rebuild the application.

� Profiling library API: Places calls to library methods to control profiling at the source level.
It does require you to recompile the application and link it to the profiling library.

Instrument?

Use the
executable?

Instrument binary

Recompile with
Required flags

Recompile with
Required flags

Use profile library
API

Recompile and
link to profile library

Run instrumented
executable

Preload profile
library

Run
executable

Use
GUI?

Open profile reports
on text editor

Open profile reports
on hpctView

Recorded
trace?

Open trace visualizer
on hpctView

Visualize

Profile

Instrument
160 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

The profile phase is to run an instrumented executable file with a relevant work load so that
useful data is collected. For situations where the binary is not instrumented, it requires you to
preinstall at run time the corresponding profiling tool library and use of environment variables
to control the behavior of the library. The library then takes over some method calls to
produce the profile data.

To visualize the data that is produced by the profiling tools, you can use hpctView for the
graphical visualization or Linux commands, such as cat, to inspect the report files.

The use of hpctView to carry on the instrument-profile-visualize analysis cycle is a convenient
method because it permits fine-grained instrumentation at file, function, MPI call, or region
levels. It also provides other means to profile the parallel application, and easy visualization of
profile data and graphical tracing.

The Parallel Performance Toolkit tools are briefly described in the next sections, which show
the many ways to profile and trace a parallel application. For more information about those
topics, see the guide to getting started at the IBM Knowledge Center and click Select a
product → Parallel Performance Toolkit → Parallel Performance Toolkit 2.3.0.

Application profiling and tracing tool
Often, the first task in performance tuning an application involves some sort of call graph
analysis. To that purpose, the toolkit includes the application profiling and tracing tool, which
is used to visualize GNU profile (gprof) files in large scale.

To use the tool, you must compile the application with the -pg compiler flag, then run the
application to produce the profile data. It is important to use a workload that is as close as
possible to the production scenario so that good profile data can be generated. As an
alternative, the application can be profiled by using Oprofile and converting the collected data
by using the opgprof tool. However, this approach does not scale well for SPMD programs.

The following example shows how to prepare a Fortran 77 application to generate gprof data:

$ mpif77 -g -c compute_pi.f
$ mpi77 -g -pg -o compute_pi compute_pi.o

After the application is run, one gmon.out profile file is built per task.

Because MPI applications generates several performance files (one per rank), the hpctView
provides an visualization mode specifically to combine the various file and ease data
navigation.

Complete steps to load the gmon.out files into hpctView:

1. Import the profiled application executable file by clicking File → Open Executable.

2. On the menu bar, select File → Load Call Graph (gmon.out).

3. In the Select gmon.out Files window, browse the remote file system to select the gmon.out
files that you want to load. Click OK.
Chapter 4. Measuring and tuning applications 161

http://www.ibm.com/support/knowledgecenter

The hpctView callgraph visualizer opens, as shown in Figure 4-25.

Figure 4-25 The hpctView callgraph visualizer with example gprof data loaded on callgraph tool

Information per called method number of calls, average amount of time spent in each call,
and the total percentage of time, are presented in the gprof tab, as shown in Figure 4-26.

Figure 4-26 The hpctView callgraph visualizerwith an example of gprof loaded

MPI profiling and tracing
Performance analysis of MPI applications usually involves understanding many aspects of
messages that are exchanged between the tasks, such as communication patterns,
synchronization, and the data that is moved. To assist with application analysis is the Parallel
Performance Toolkit, which provides tools for profiling, tracing, and visualization of the
produced data.
162 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

The following profiles and reporting information (per tasks) are available:

� Number of times that MPI routines are run.

� Total wall time that is spent in each MPI routine.

� Average transferred bytes on message passing routines.

� Highlight the tasks with minimal, median, and maximum communication time. This
information is provided only in the report of task 0.

You can use the profile and trace data to perform many types of analysis, such as
communication patterns, hot spots, and data movements.

Example 4-12 shows the textual report for task 0 of an MPI program. The last section of the
report (Communication summary for all tasks) shows the minimum (task 7), median (task 4),
and maximum (tasks 5) communication time that was spent on tasks.

Example 4-12 HPC Toolkit - MPI profiling report for task 0

$ cat hpct_0_0.mpi.txt

MPI Routine #calls avg. bytes time(sec)

MPI_Comm_size 1 0.0 0.000
MPI_Comm_rank 1 0.0 0.000
MPI_Bcast 1 4.0 0.000
MPI_Barrier 1 0.0 0.000
MPI_Allreduce 4 26.0 0.000

total communication time = 0.000 seconds.
total elapsed time = 2.725 seconds.

Message size distributions:

MPI_Bcast #calls avg. bytes time(sec)
 1 4.0 0.000

MPI_Allreduce #calls avg. bytes time(sec)
 3 8.0 0.000
 1 80.0 0.000

Communication summary for all tasks:

 minimum communication time = 0.000 sec for task 7
 median communication time = 0.001 sec for task 4
 maximum communication time = 0.002 sec for task 5

Example 4-13 on page 164 lists the files that are generated by the tool. Notice that although
the parallel job that is used in this example has eight tasks, only the reports of tasks 0, 4, 5,
and 7 are available. The MPI profiling tool by default generates reports for the four most
significant tasks according to the communication time criteria: Task 0 (an aggregate of all
tasks) and tasks with minimum, median, and maximum communication time.
Chapter 4. Measuring and tuning applications 163

Example 4-13 Listing the files generated by the tool

$ ls
hpct_0_0.mpi.mpt hpct_0_0.mpi.txt hpct_0_0.mpi.viz hpct_0_4.mpi.txt
hpct_0_4.mpi.viz hpct_0_5.mpi.txt hpct_0_5.mpi.viz hpct_0_7.mpi.txt
hpct_0_7.mpi.viz

Still taking as example the same parallel job, the task with maximum communication time is 5,
as shown in Example 4-14.

Example 4-14 Contents of the profiling tasks

$ cat hpct_0_5.mpi.txt

MPI Routine #calls avg. bytes time(sec)

MPI_Comm_size 1 0.0 0.000
MPI_Comm_rank 1 0.0 0.000
MPI_Bcast 1 4.0 0.000
MPI_Barrier 1 0.0 0.000
MPI_Allreduce 4 26.0 0.001

total communication time = 0.002 seconds.
total elapsed time = 2.725 seconds.

Message size distributions:

MPI_Bcast #calls avg. bytes time(sec)
 1 4.0 0.000

MPI_Allreduce #calls avg. bytes time(sec)
 3 8.0 0.001
 1 80.0 0.000

Along with the profile data, the tool records MPI routines calls over time that can be used
within hpctView trace visualizer. This information is useful to analyze the communication
patterns within the parallel program.

The easiest way to profile your MPI application is to load the trace library before the execution
by exporting the LD_PRELOAD environment variable. However, it can produce too much data
from large programs.

The use of the hpctView instrumentation-run-visualize analysis cycle from within hpctView is
also a convenient way to profile the application as it permits fine-grained instrumentation at
levels of files, functions, MPI routines, or code regions.

The examples that are shown in this section were generated by using the script that is shown
in Example 4-15 on page 165. To use the MPI profile preload library, the parallel program can
be compiled by using the -g -Wl,--hash-style=sysv -emit-stub-syms flags.
164 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Example 4-15 Script to profile MPI with HPC Toolkit

01 #!/bin/bash
02 #
03 # Use it as: $ MP_PROCS=<num> poe ./hpct_mpiprofile.sh <app> <args>
04 #
05
06 . /opt/ibmhpc/ppedev.hpct/env_sh
07
08 #
09 # HPCT MPI Trace control variables
10 #
11
12 ## Uncomment to set maximum limit of events traced.
13 ## Default is 30000.
14 #MAX_TRACE_EVENTS=
15
16 ## Uncomment to generate traces for all ranks.
17 ## Default are 4 tasks: task 0 and tasks with maximum, minimum and median
communication time.
18 #OUTPUT_ALL_RANKS=yes
19
20 ## Uncomment to enable tracing of all tasks.
21 ## Default are tasks from 0 to 255 ranks.
22 #TRACE_ALL_TASKS=yes
23
24 ## Uncomment to set maximum limit of rank traced.
25 ## Default are 0-255 ranks or all if TRACE_ALL_TASKS is set.
26 #MAX_TRACE_RANK=
27
28 ## Uncomment to set desired trace back level. Zero is level where MPI function
is called.
29 ## Default is the immediate MPI function's caller.
30 #TRACEBACK_LEVEL=
31
32 # Preload MPI Profile library
33 LD_PRELOAD=/opt/ibmhpc/ppedev.hpct/lib64/preload/libmpitrace.so
34
35 $@

MPI I/O profiling
Characterization and analysis of I/O activities is an important topic of performance
improvement, especially regarding parallel applications that demand critical usage of storage.
The MPI I/O (MIO) tool consists of a profiler and trace recorder for collecting information
about I/O system calls that are carried out by the parallel program to access and manipulate
files.

The tool records information about I/O events that are triggered when the parallel application
accesses files. General statistics per file are calculated out of the events that are probed; for
example, the number of times each operation occurred and total time spent. Also, depending
on the event, it collects the following information:

� Total of bytes requested
� Total of bytes delivered
� Minimum requested size in bytes
� Maximum requested size in bytes
Chapter 4. Measuring and tuning applications 165

� Rate in bytes
� Suspend wait count
� Suspend wait time
� Forward seeks average
� Backward seeks average

In particular, for events as read and write, the tool can trace operations. For example, you can
access start offset, number of bytes, end offset.

To use MIO, you must compile the application by using the -g -Wl,--hash-style=sysv
-Wl,--emit-stub-syms flags to prepare the binary for instrumentation.

You also can use hpctView to easily cycle instrumentation, execution, and visualization of
information that is implemented by MIO tool. The tool abstracts the many environment
variables that can be used to control type and amount of information that is gathered.

Figure 4-27 shows the hpctView visualization mode for data that is generated by using the
MIO tool. More information about each I/O system call is provided on a per-task basis.

Figure 4-27 hpctView: MPI I/O tool profiling visualization

Another view of hpctView displays the I/O trace data, as shown in Figure 4-28.

Figure 4-28 hpctView: MPI I/O tool trace visualization
166 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Hardware Performance Monitor
The Hardware Performance Monitor (HPM) tool is an analog tool that provides easy SPMD
programs profiling on Linux on Power Systems. By using HPM, you can profile MPI programs
regarding any of the hardware events available or obtain any of the predefined metrics that
are most commonly used in performance analysis.

The Processor Monitor Unit (PMU) of POWER8 is a part of the processor that is dedicated to
recording hardware events. It has six Performance Monitor Counter (PMC) registers:
Registers 0 - 3 can be programmed to count any of the more than one thousand events that
are available, register 4 can count run instructions completed, and register 5 can count run
cycles.

These events are important because they can reveal performance issues, such as pipeline
bubbles, inefficient use of caches, and the high ratio of branches misprediction from the
perspective of the processor. Metrics for performance measurements can also be calculated
from hardware events, such as instructions per cycle, million of instructions per second
(MIPS), and memory bandwidth.

For single programs, tools, such as Oprofile and Perf, provide access to system-wide or
application profiling of those hardware events on POWER8. Parallel SPMD programs are
often difficult to profile with these traditional tools because they are designed to deal with a
single process (whether multi-threaded or not).

For more information about Oprofile, see the following resources:

� Oprofile tool website
� Perf tool Wiki webpage

For more information about predefined metrics, see the Derived metrics defined for POWER8
architecture page of the IBM Knowledge Center.

Figure 4-29 shows an HPM report that is opened by using hpctView.

Figure 4-29 hpctView: HPC tool visualization
Chapter 4. Measuring and tuning applications 167

http://www.ibm.com/support/knowledgecenter/SSFK5S_2.2.0/com.ibm.cluster.pedev.v2r2.pedev100.doc/bl7ug_derivedmetrics.htm
http://www.ibm.com/support/knowledgecenter/SSFK5S_2.2.0/com.ibm.cluster.pedev.v2r2.pedev100.doc/bl7ug_derivedmetrics.htm
http://perf.wiki.kernel.org
https://perf.wiki.kernel.org/index.php/Main_Page
http://oprofile.sourceforge.net/news/

GPU Performance Monitoring
The GPU Performance Monitoring (GPM) tool is designed to profile and trace hardware
events that are triggered in the GPU on hybrid MPI with CUDA C programs. Similar to HPM,
GPM profiles raw hardware events and provides a set of predefined metrics that are
calculated out of those events.

The HPM tool can profile raw hardware events and obtain metrics from a predefined list. The
gpmlist command is the interface that is used to fetch the list of events and supported
metrics. Example 4-16 shows a sample of the list of events that are available for the NVIDIA
P100 GPU.

Example 4-16 How to list events available to GPM profile tool

$ /opt/ibmhpc/ppedev.hpct/bin/gpmlist -d p100 -e -l
Domain 0
 83886081 tex0_cache_sector_queries - queries
 83886082 tex1_cache_sector_queries - queries
 83886083 tex0_cache_sector_misses - misses
 83886084 tex1_cache_sector_misses - misses
 Domain 1
 83886182 active_cycles - active_cycles
 83886183 elapsed_cycles_sm - elapsed_cycles_sm
 Domain 2
 83886085 fb_subp0_read_sectors - sectors
 83886086 fb_subp1_read_sectors - sectors
 83886087 fb_subp0_write_sectors - sectors
 83886088 fb_subp1_write_sectors - sectors
<... Output Omitted ...>
 Domain 3
 83886134 gld_inst_8bit - gld_inst_8bit
 83886135 gld_inst_16bit - gld_inst_16bit
 83886136 gld_inst_32bit - gld_inst_32bit
 83886137 gld_inst_64bit - gld_inst_64bit
 83886138 gld_inst_128bit - gld_inst_128bit
<... Output Omitted ...>
 Domain 4
 83886166 active_cycles_in_trap - active_cycles_in_trap
 Domain 5
 83886144 prof_trigger_00 - pmtrig0
 83886145 prof_trigger_01 - pmtrig1
<... Output Omitted ...>
168 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Example 4-17 shows a sample of the metrics that are available for the NVIDIA P100 GPU.

Example 4-17 How to list metrics available to GPM profile tool

$ /opt/ibmhpc/ppedev.hpct/bin/gpmlist -d p100 -m -l
 19922945 inst_per_warp - Instructions per warp
 83886156 inst_executed - inst_executed
 83886152 warps_launched - warps_launched
 19922946 branch_efficiency - Branch Efficiency
 83886177 branch - branch
 83886176 divergent_branch - branch
 19922947 warp_execution_efficiency - Warp Execution Efficiency
 83886157 thread_inst_executed - thread_inst_executed
 83886156 inst_executed - inst_executed
<... Output Omitted ...>

As with other HPC Toolkit tools, GPM is also flexible regarding the instrument-profile-visualize
cycle possibilities. It can also be used with the HPM tool.

The following environment variables are used to configure the profiler:

� GPM_METRIC_SET: Sets the metrics to be profiled.

� GPM_EVENT_SET: Sets the hardware events to be profiled. Cannot be exported with
GPM_METRIC_SET.

� GPM_VIZ_OUTPUT=y: Enables the creation of visualization files that are used by hpctView
visualizer (disabled by default).

� GPM_STDOUT=n: Suppresses the profiler messages to standard output (stdout). Sends
messages to stdout by default.

� GPM_ENABLE_TRACE=y: Turns on trace mode (is off by default).

Example 4-18 shows a profiling session of a hybrid MPI and CUDA C application that is
named a.out. The lines ranging 1 - 26 are the content of the gpm.sh script, which exports the
GPM control variables (lines 13 - 15) that instruct the system to calculate the sm_efficiency
metric. Then, they evoke the wrapper that is named gpm_wrap.sh. In turn, the wrapper (lines
29 - 35) script preloads (line 33) the GPM library. The remained lines are messages that are
printed by GPM on standard output.

Example 4-18 Profiling with GPU Performance Monitor tool

1 $ cat gpm.sh
2
3 #!/bin/bash
4
5
6
7 export

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-7.5/lib64:/opt/ibmhpc/pecurrent/m
pich/gnu/lib64:/opt/ibmhpc/pecurrent/gnu/lib64/

8
9
10
11 # GPU Performance Monitor - variables
12
13 export GPM_METRIC_SET=sm_efficiency
14
15 export GPM_VIZ_OUTPUT=y
Chapter 4. Measuring and tuning applications 169

16
17
18
19 export MP_CUDA_AWARE=yes
20
21 export MP_RESD=poe
22
23 export MP_PROCS=2
24
25 poe ./gpm_wrap.sh
26
27 $ cat gpm_wrap.sh
28
29 #!/bin/bash
30
31
32
33 export LD_PRELOAD=/opt/ibmhpc/ppedev.hpct/lib64/preload/libgpm.so:$LD_PRELOAD
34
35 ./a.out
36
37 $./gpm.sh
38
39
40
41 GPM (IBM HPC Toolkit for PE Developer Edition) results
42
43
44
45 Device 0 (Tesla K80):
46
47 --
48
49 Symbol Name: cudaMalloc
50
51 --
52
53 Memory Kind: cudaMalloc
54
55 Bytes Copied: 4096
56
57
58
59 Symbol Name: cudaMemcpy
60
61 --
62
63 Memory Kind: cudaMemcpyHostToDevice
64
65 Bytes Copied: 4096
66
67
68
69 Kernel Name: _Z12vecIncKernelPii
70
170 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

71 ---
72
73 GPU Kernel Time: 0.000005 seconds
74
75 W/clock Time: 0.012338 seconds
76
77 sm_efficiency: 31.155739%
78
79
80
81 Symbol Name: cudaMemcpy
82
83 --
84
85 Memory Kind: cudaMemcpyDeviceToHost
86
87 Bytes Copied: 4096
88
89
90
91 Totals for device 0
92
93 --
94
95 Total Memory Copied: 8192 bytes
96
97 Total GPU Kernel Time: 0.000005 seconds
98
99 Total W/clock Time: 0.012338 seconds
100
101 sm_efficiency: 31.155739%
102

As a result, the tool reports the calculated metric or counted event on per-task files.
Example 4-19 shows the report that is generated for execution in Example 4-18 on page 169.

Example 4-19 Report generated by GPU Performance Monitoring tool

$ cat hpct_0_0.gpm.a.out.txt

 GPM (IBM HPC Toolkit for PE Developer Edition) results

 Totals for device 0
 --
 Total Memory Copied: 8192 bytes
 Total GPU Kernel Time: 0.000005 seconds
 Total W/clock Time: 0.012338 seconds
 sm_efficiency: 31.155739%

For more information about the GPM tool, see the Using GPU hardware counter profile page
of the IBM Knowledge Center website.
Chapter 4. Measuring and tuning applications 171

https://www.ibm.com/support/knowledgecenter/SSFK5S_2.3.0/com.ibm.cluster.pedev.v2r3.pedev100.doc/bl7ug_gpuhwcntrshpctview.htm

IBM HPC Toolkit hpctView
The hpctView is a front end view for the Parallel Performance Toolkit run time and
command-line tools. It provides a GUI to instrument the parallel executable file, which you can
run to collect data and visualize information from your development workstation (desktop or
notebook).

The tool can be run from the developer workstation. Version 2.3 is supported on Mac OS 10.9
(Mavericks) or later, Microsoft Windows 64 bit, and any 64 bit Linux distribution.

Find the hpctView as a tarball file distributed in toolkit distribution media. Then, proceed as
shown in the following example to install it and run it on Linux workstation:

$ tar xvzf hpctView-2.2.0-0-linux-gtk-x86_64.tar.gz
$ cd hpctView
$./hpctView &

The hpctView application implements the complete cycle of instrument-run-visualize (see
4.6.1, “Parallel Performance Toolkit” on page 159) that is required to use the Parallel
Performance Toolkit tools. As an alternative, profile and trace data files can be generated by
using the command-line tools and libraries then loaded into hpctView just for visualization and
analysis.

In addition to the hpctView stand-alone application, the toolkit includes plug-ins to enable
hpctView within Eclipse Integrated Development Environment (IDE). For more information,
see 4.6.3, “Eclipse for Parallel Application Developers” on page 174.

The first step to profile and trace an application is to prepare the program execution. To
instrument the binary, complete the following steps in hpctView:

1. In the Instrumentation pane (left side pane), select the profiler for which you want to
instrument the binary. The options are HPM, MPI, OpenMP, and MIO.

2. Click File → Open Executable. A window opens that includes a connection to the remote
machine. Select the file to be instrumented, as shown Figure 4-30.

Figure 4-30 hpctView: Select binary for instrumentation

3. Click New to create a connection to the remote system where the binary is hosted if it
does not exist.
172 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

4. Select the binary. Click OK.

The binary content is analyzed and sections that correspond to the instrumentation
portions of the application code are listed in tree format in the Instrumentation pane.
Different instrumentation options are displayed for each type of profiling tool. For example,
Figure 4-31 shows the options (Function body, Function Call, HPM Region) for the
instrumentation of a binary to be used with the HPM tool. Select the instrumentation points
according to your needs.

Figure 4-31 hpctView: Binary instrumentation

5. Click the instrument executable icon in the Instrumentation pane. If the operation
succeeds, a file that is named <binary>.inst is saved in the same folder as the original
binary.

From within hpctView, you can then start the instrumented binary by using IBM Spectrum MPI
or submitting a batch job to IBM Spectrum Load Sharing Facility (LSF). The Parallel
Performance Toolkit provides many environment variables to control the tools behavior (for
example, the amount of data to be collected).

After the instrumented binary is run, a view of the corresponding tool is automatically opened.
Now, the many options that are available to make analysis of the data collected as, for
example, interval trace viewer can be used.

For more information about hpctView use, see the Using the hpctView application page of the
IBM Knowledge Center website.

4.6.2 Parallel application debuggers

The GNU Debugger (GDB) is a known debugger for serial and multi-threaded application that
can also be used to debug parallel SPMD programs. By using the IBM Spectrum MPI, the
GDB can be attached to individual MPI processes or start many debug instances with the
mpirun command. Both techniques require complex setup, do not scale well, and often do not
deliver suitable results.
Chapter 4. Measuring and tuning applications 173

https://www.ibm.com/support/knowledgecenter/SSFK5S_2.3.0/com.ibm.cluster.pedev.v2r3.pedev100.doc/bl7ug_usingrcp.htm

The use of specialized debuggers for parallel applications is recommended. The following
products support debugging of C, C++, and Fortran applications in IBM Power Systems:

� Allinea DDT debugger
� RogueWave TotalView

These parallel debuggers are tightly integrated with IBM Spectrum MPI. The use of the
mpirun --debug command starts DDT or TotalView, if it is reachable in the system’s PATH.

For more information about DDT and TotalView integration with IBM Spectrum MPI, see the
following IBM Knowledge Center pages:

� Debugging applications with the Allinea DDT debugger and IBM Spectrum MPI
� Debugging applications with the TotalView debugger and IBM Spectrum MPI

4.6.3 Eclipse for Parallel Application Developers

Eclipse for Parallel Application Developers provides an entire IDE. It bundles some open
source projects under the Eclipse umbrella that includes C/C++ Development Tools (CDT)
and PTP. It provides a complete environment for coding, compiling, starting, analyzing, and
debugging applications that are written in C, C++, and Fortran. It uses MPI, OpenMP, PAMI,
and OpenSHMEM.

The specialized editors feature syntax highlighting, code assistant, place markers for compiler
errors, auto-completion, and many other features to improve productivity. They also include
static analysis tools that are used to identify common coding mistakes, such as MPI barriers
mismatch.

You can build programs by using Eclipse managed makefile (integrated with IBM XL and GNU
compilers), Makefile, Autotools, and custom scripts and commands. The integration with XL
and GNU compilers also includes build output parsers that can correlate errors to source
code files.

Remotely started applications on IBM Spectrum MPI (Open MPI) or IBM Spectrum LSF are
supported.

Its parallel debugger provides specific debugging features for parallel applications that
distinguish it from the Eclipse debugger for serial applications. Its parallel debugger can also
start and remotely debug parallel applications through Open MPI and LSF.

For more information about the topics that are introduced in this section, see the Eclipse PTP
user guide at the following website by selecting the Parallel Tools Platform (PTP) User
Guide.

To install Eclipse, download its tarball file and then uncompress it on your development
workstation. For more information, Visit the Eclipse download website, click Download
Packages, and select Eclipse for Parallel Application Developers.

Download the Eclipse tarball file for your workstation operating system and architecture. At
the time of this writing, the latest Eclipse version was 4.6.2 (also known as Eclipse Neon.2).

Remote synchronized development model
The Eclipse for Parallel Application developers implements a remote development working
model in which the code editing is done locally within a workbench (GUI). However, other
tasks that are usually required to be performed on the server side, such as build, launch,
debug, and profile, are carried out remotely.
174 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.allinea.com/products/ddt
http://www.roguewave.com/products-services/totalview
https://www.ibm.com/support/knowledgecenter/en/SSZTET_10.1.0/smpi02/smpi02_debugging_allinea.html
http://www.allinea.com/products/ddt
https://www.ibm.com/support/knowledgecenter/en/SSZTET_10.1.0/smpi02/smpi02_debugging_totalview.html
https://www.ibm.com/support/knowledgecenter/en/SSZTET_10.1.0/smpi02/smpi02_debugging_allinea.html
https://www.ibm.com/support/knowledgecenter/en/SSZTET_10.1.0/smpi02/smpi02_debugging_totalview.html
http://www.eclipse.org/downloads/
http://www.roguewave.com/products-services/totalview
http://help.eclipse.org
http://help.eclipse.org

The model uses a synchronized project type to keep local and remote copies of the working
directory updated so that code programming is minimally affected by network latency or slow
response time in the editor. The C, C++, and Fortran editors appear as though you are
developing locally on the Power Systems machine even though all of the resources are on the
server side. By using this approach, you do not need to rely on a cross-compilation
environment, which is often difficult to set up. This approach provides an efficient method for
remote development.

Parallel debugger
The Eclipse PTP parallel debugger extends the default C/C++ Eclipse debugger for serial
application to scale parallel programs. It combines the information that is obtained from the
many processes and threads that a parallel job is composed of into a single viewer.
Therefore, you can browse the entities separately, if needed.

Debugging operations can be carried out on any arbitrary subset of processes within a
parallel job; for example, as step in and out, and stop at breakpoint. A different type of
breakpoint, which is called a parallel breakpoint, can be applied in these collections of
processes.

The debugger can start and remote debug parallel programs by using several types of
workload managers, including the Open MPI and Spectrum LSF.

Using IBM hpctView within Eclipse
The IBM Parallel Performance Toolkit provides plug-ins for hpctView (see 4.6.1, “Parallel
Performance Toolkit” on page 159) be installed on top of Eclipse.

Find the plug-ins in Parallel Performance Toolkit distribution media. Then, uncompress the file
as shown in the following example:

$ mkdir ppedev_update-2.3.0
$ unzip ppedev_update-2.3.0-0.zip -d ppedev_update-2.3.0

Next, install the plug-ins by using the Eclipse install software by completing the following
steps:

1. At tool bar menu, select Help → Install New Software.

2. Click Add to create a repository location from where Eclipse can find plug-ins to be
installed.

3. Enter the location where hpctView update site files were uncompressed. Click OK to add
the repository configuration.

4. In the selection tree that is appears, select its root element to install all of the plug-ins.
Click Next. Then, click Next.

5. Read and accept the license agreement to continue the installation.

6. Click Finish to install the plug-ins.

For more information about installing the plug-ins, see the Updating and installing software
section of the Eclipse workbench user guide website. In the left side navigation tree at the
website, click Workbench User Guide → Tasks → Updating and installing software.

To use hpctView, open its perspective within Eclipse by completing the following steps:

1. Click Window → Perspective → Open Perspective → Other.
2. In the perspective window that opens, select HPCT and click OK.
Chapter 4. Measuring and tuning applications 175

http://help.eclipse.org
http://help.eclipse.org
http://help.eclipse.org

4.6.4 NVIDIA Nsight Eclipse Edition for CUDA C/C++

The NVIDIA Nsight Eclipse Edition is a complete IDE for development of CUDA C and C++
applications that run on NVIDIA GPUs. It provides developers with an Eclipse-based GUI that
includes tools for a complete cycle of development: Code writing, compiling, debugging, and
profiling and tuning.

The following development models are available:

� Local: The complete development cycle is carried out at the machine where Nsight is
running. The program that is produced is targeted for the local host architecture and GPU.

� Remote: The complete development cycle is carried out at a remote host where Nsight is
running.

In the next sections, we describe the basic use of Nsight for remote development of CUDA C
applications for IBM Power Systems. The examples that are described in this section use a
workstation with Linux Fedora 23 64-bit that is running the NVIDIA Nsight Eclipse Edition that
is included with the CUDA Toolkit 8.0.

Not all of Nsight’s functions are described in this book. Instead, we show how to create,
compile, and debug projects. For more information, see the Nsight Eclipse Edition website.

Running NVIDIA Nsight Eclipse Edition
The Nsight GUI can be started as shown in the following example:

$ export PATH=/usr/local/cuda-8.0/bin:$PATH
$ nsight &

Creating a project for remote development
Before you begin, check the requirements and complete the following steps:

1. Ensure that the machine (usually the cluster login node) you are going to use for remote
development has Git installed. Nsight uses git commands to synchronize local and
remote copies of the project files.

2. Connect to the remote machine to configure user name and email that is used by Git, as
shown in the following example:

$ git config --global user.name "Wainer dos Santos Moschetta"
$ git config --global user.email "wainersm@br.ibm.com"

3. Ensure that the directory that is going to hold the project files in the remote machines is
created, as shown in the following example:

$ mkdir -p ~/wainer/cudaBLAS
176 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://developer.nvidia.com/nsight-eclipse-edition
http://developer.nvidia.com/nsight-eclipse-edition

In the Nsight GUI, complete the following steps to create a CUDA C/C++ project:

1. On the main menu tool bar, click File → New → CUDA C/C++ Project to open the window
that is shown in Figure 4-32.

Figure 4-32 Nsight: New CUDA C/C++ project wizard

2. Click Next. Then, click Next again.
Chapter 4. Measuring and tuning applications 177

3. Select 3.7 for the Generate PTX code and Generate GPU code options, as shown in
Figure 4-33. Click Next.

Figure 4-33 Nsight: New CUDA C/C++ project basic settings
178 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

4. Click Manage (as shown in Figure 4-34) to configure a new connection to the remote
machine.

Figure 4-34 Nsight: New CUDA C/C++ project remote connection setup

5. As shown in Figure 4-34, enter the connection information fields (host name and user
name). Click OK.
Chapter 4. Measuring and tuning applications 179

6. Enter the Project path and Toolkit information and set the CPU Architecture fields for the
newly created connection (see Figure 4-35). You must remove the Local System
configuration. Click Next. Then, click Finish.

Figure 4-35 Nsight - new CUDA C/C++ project further remote configuration setup

After you successfully create the project, complete the following steps to configure the Nsight
to automatically synchronize the local and remote project files:

1. Create a source code file (for example, main.c).

2. Right-click the project in the Project Explorer pane and select Synchronize → Set active.
Then, choose the option that matches the name of the connection configuration to the
remote machine.

3. Right-click the project again and select Synchronize → Sync Active now to perform the
first synchronization between local and remote folders. (A synchronization can be
performed at any time.) Remember that Nsight is configured to perform a synchronization
after or before some tasks (for example, before compiling the project).
180 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

4. As an optional step, set the host compiler that is evoked by nvcc. Right-click the project
name and select Properties. Expand Build, and then choose Settings. Click the Tool
Settings tab and select Build Stages. Enter the necessary information in the Compiler
Path and Preprocessor options fields (see Figure 4-36). Change the content of the
Compiler Path under the Miscellaneous section of the NVCC Linker window.

Figure 4-36 Nsight - new CUDA C/C++ project build settings

After completing these steps, the new project is ready for CUDA C/C++ programming. You
can use many of the features that are provided by the Nsight C and C++ code editor, such as
syntax highlighting, code completion, static analysis, and error markers.

Compiling the application
To build the application, complete the following steps:

1. Right-click the project in the Project Explorer pane and select Run As → Remote C/C++
Application.

2. Check that all the information is correct and change any information, if needed. Then, click
Run.

Debugging the application
The steps to start the Nsight debugger are similar to the steps that are used to run the
application. However, the executable file is started by using the cuda-gdb command, which in
turn is backed by the GNU GDB debugger tool.
Chapter 4. Measuring and tuning applications 181

For more information about the cuda-gdb command see 4.6.5, “Command-line tools for CUDA
C/C++” on page 182.

To debug the application, complete the following steps:

1. Right-click project name in the Project Explorer pane and select Debug As → Remote
C/C++ Application.

2. A window opens in which you are prompted for permission to open the Eclipse Debug
perspective. Click Yes.

By default, the debugger stops at the first instruction on the main method. Figure 4-37 shows
the Nsight debugger.

Figure 4-37 Nsight: CUDA C/C++ debugger

4.6.5 Command-line tools for CUDA C/C++

The NVIDIA Toolkit 8.0 provides the following tools for debugging problems on CUDA C and
C++ applications.

CUDA-MEMCHECK
The CUDA-MAMCHECK tool detects memory-related flaws on programs. It dynamically
instruments the program executable file on run time and can check allocation and
deallocation and accesses on global and shared memories.

In addition to memory checking, CUDA-MEMCHECK also can inspect the application to catch
the following types of errors:

� Race condition: Check for race condition on access of shared and local variables. Uses
the --tool racecheck option.

� initcheck: Check for use of non-initialized memory. Uses the --tool initcheck option.

� synccheck: Check for synchronization errors. Uses the --tool synccheck option.
182 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Notice that for complete visualization of the source code file and the line number where
detected problems occur, the binary must be compiled by using the nvcc -g -lineinfo
options.

For more information about the CUDA-MEMCHECK tool, see the CUDA-MEMCHECK user’s
manual.

CUDA GDB
CUDA application portions of the code runs on CPU (host) and GPUs (devices), and
programs can often have thousands of CUDA threads that are spread across many GPUs.
Although traditional debuggers are effective to work with CPU code, they are not properly built
to deal with both.

The cuda-gdb tool is an implemented debugger extension of GNU GDB that is designed to
deal with the scenario that CUDA hybrid model imposes.

nvprof tool
The nvprof tool is an extensive command-line profiling tool that is distributed with CUDA
Toolkit. Designed to be flexible, profiles all processes in the entire system, only a specific
application, or only some elements of it (for example, kernels, streams, and contexts). Also, it
allows you to select which GPU device must be profiled (default is all on the system).

By default, nvprof time profiles the calls to kernel functions and CUDA API, as shown in
Example 4-20.

Example 4-20 Time profiling kernels and CUDA API

$ nvprof --log-file profile.out ./MonteCarloMultiGPU 2&> /dev/null
$ cat profile.out
==73495== NVPROF is profiling process 73495, command: ./MonteCarloMultiGPU 2
==73495== Profiling application: ./MonteCarloMultiGPU 2
==73495== Profiling result:
Time(%) Time Calls Avg Min Max Name
 79.29% 97.066ms 4 24.267ms 24.169ms 24.396ms
MonteCarloOneBlockPerOption(curandStateXORWOW*, __TOptionData const *,
__TOptionValue*, int, int)
 20.67% 25.306ms 4 6.3264ms 6.2893ms 6.3711ms
rngSetupStates(curandStateXORWOW*, int)
 0.03% 37.344us 4 9.3360us 8.9600us 10.048us [CUDA memcpy HtoD]
 0.01% 12.928us 4 3.2320us 2.8480us 3.5840us [CUDA memcpy DtoH]

==73495== API calls:
Time(%) Time Calls Avg Min Max Name
 85.47% 547.62ms 4 136.90ms 131.25ms 143.30ms cudaStreamCreate
 3.77% 24.160ms 4 6.0401ms 195.00us 22.889ms cudaEventSynchronize
 2.03% 12.999ms 12 1.0832ms 1.0394ms 1.1578ms cudaMalloc
 1.84% 11.818ms 16 738.65us 714.22us 818.61us cudaGetDeviceProperties
 1.19% 7.6318ms 4 1.9079ms 1.8529ms 1.9930ms cudaMallocHost
 1.18% 7.5904ms 4 1.8976ms 1.8906ms 1.9076ms cudaHostAlloc
 1.04% 6.6817ms 8 835.22us 17.319us 1.6565ms cudaLaunch
 0.98% 6.2936ms 4 1.5734ms 14.881us 6.2399ms cudaDeviceSynchronize
 0.86% 5.5070ms 8 688.37us 673.41us 748.69us cudaFreeHost
 0.66% 4.2604ms 4 1.0651ms 1.0615ms 1.0672ms cuDeviceTotalMem
 0.48% 3.0439ms 364 8.3620us 394ns 303.12us cuDeviceGetAttribute
 0.38% 2.4584ms 12 204.87us 194.19us 230.03us cudaFree
 0.04% 251.96us 4 62.989us 61.403us 64.379us cuDeviceGetName
Chapter 4. Measuring and tuning applications 183

http://docs.nvidia.com/cuda/cuda-memcheck/index.html
http://docs.nvidia.com/cuda/cuda-memcheck/index.html

 0.02% 132.76us 8 16.594us 11.935us 31.873us cudaMemcpyAsync
 0.01% 77.114us 28 2.7540us 1.6600us 15.832us cudaSetDevice
 0.01% 53.252us 4 13.313us 12.214us 16.493us cudaStreamDestroy
 0.00% 23.942us 4 5.9850us 5.1930us 7.5630us cudaEventRecord
 0.00% 21.598us 28 771ns 662ns 1.2580us cudaSetupArgument
 0.00% 19.164us 4 4.7910us 4.4390us 5.1540us cudaEventCreate
 0.00% 17.214us 4 4.3030us 2.7130us 5.3020us cudaEventDestroy
 0.00% 8.7520us 8 1.0940us 744ns 1.6830us cudaConfigureCall
 0.00% 7.1430us 12 595ns 422ns 795ns cuDeviceGet
 0.00% 7.1380us 8 892ns 707ns 1.1000us cudaGetLastError
 0.00% 6.2230us 3 2.0740us 719ns 4.6540us cuDeviceGetCount
 0.00% 4.3670us 1 4.3670us 4.3670us 4.3670us cudaGetDeviceCount

Time profiling is a good start point towards improving an application. As shown in
Example 4-20, it unveils that MonteCarloOneBlockPerOption kernel ran in a total of 97.066 ms
(79.29%), while cudaStreamCreate API calls used 547.62 ms (85.47%).

Another way to view the application behavior that is shown in Example 4-20 is to determine
the execution critical path combined with the information that is gathered from CPU (CUDA
API calls) and GPU (kernel evocations) executions. The nvprof dependency analysis mode8
produces a report for the critical path when the option --dependency-analysis is used (see
Example 4-21).

Example 4-21 Reporting the execution critical path

$ nvprof --log-file profile.out --dependency-analysis ./MonteCarloMultiGPU 2&>
/dev/null
$ cat profile.out
==73532== NVPROF is profiling process 73532, command: ./MonteCarloMultiGPU 2
==73532== Profiling application: ./MonteCarloMultiGPU 2
==73532== Profiling result:
Time(%) Time Calls Avg Min Max Name
 79.32% 97.266ms 4 24.316ms 24.010ms 24.473ms
MonteCarloOneBlockPerOption(curandStateXORWOW*, __TOptionData const *,
__TOptionValue*, int, int)
 20.64% 25.310ms 4 6.3274ms 6.2963ms 6.3661ms
rngSetupStates(curandStateXORWOW*, int)
 0.03% 36.544us 4 9.1360us 8.7680us 9.6000us [CUDA memcpy HtoD]
 0.01% 12.992us 4 3.2480us 2.8160us 3.6800us [CUDA memcpy DtoH]

==73532== API calls:
Time(%) Time Calls Avg Min Max Name
 86.40% 590.17ms 4 147.54ms 138.74ms 162.78ms cudaStreamCreate
 3.51% 23.995ms 4 5.9988ms 38.611us 23.186ms cudaEventSynchronize
 1.92% 13.088ms 12 1.0907ms 1.0670ms 1.1258ms cudaMalloc
 1.70% 11.595ms 16 724.69us 713.95us 737.43us cudaGetDeviceProperties
 1.13% 7.6917ms 4 1.9229ms 1.9016ms 1.9583ms cudaMallocHost
 1.12% 7.6606ms 4 1.9152ms 1.8882ms 1.9460ms cudaHostAlloc
 0.97% 6.6572ms 8 832.15us 17.940us 1.6505ms cudaLaunch
 0.92% 6.2873ms 4 1.5718ms 13.461us 6.2349ms cudaDeviceSynchronize
 0.81% 5.5394ms 8 692.43us 675.34us 759.93us cudaFreeHost
 0.62% 4.2598ms 4 1.0650ms 1.0618ms 1.0691ms cuDeviceTotalMem
 0.45% 3.0713ms 364 8.4370us 390ns 308.84us cuDeviceGetAttribute
 0.36% 2.4474ms 12 203.95us 193.04us 230.29us cudaFree

8 New in nvprof of NVIDIA CUDA Toolkit 8.0.
184 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

 0.04% 254.18us 4 63.544us 61.981us 65.150us cuDeviceGetName
 0.02% 135.26us 8 16.907us 11.896us 31.121us cudaMemcpyAsync
 0.01% 73.833us 28 2.6360us 1.5100us 15.121us cudaSetDevice
 0.01% 52.310us 4 13.077us 11.761us 16.365us cudaStreamDestroy
 0.00% 24.634us 4 6.1580us 5.3050us 7.7970us cudaEventRecord
 0.00% 21.074us 28 752ns 666ns 1.1720us cudaSetupArgument
 0.00% 18.341us 4 4.5850us 4.2260us 5.2930us cudaEventCreate
 0.00% 15.729us 4 3.9320us 2.6210us 5.1060us cudaEventDestroy
 0.00% 8.5760us 8 1.0720us 801ns 1.9340us cudaConfigureCall
 0.00% 7.3530us 12 612ns 441ns 844ns cuDeviceGet
 0.00% 6.8210us 8 852ns 689ns 1.0040us cudaGetLastError
 0.00% 6.4790us 3 2.1590us 681ns 4.9340us cuDeviceGetCount
 0.00% 4.4320us 1 4.4320us 4.4320us 4.4320us cudaGetDeviceCount

==73532== Dependency Analysis:
Critical path(%) Critical path Waiting time Name
 83.03% 590.169908ms 0ns cudaStreamCreate
 4.14% 29.393820ms 0ns <Other>
 3.38% 24.010192ms 0ns
MonteCarloOneBlockPerOption(curandStateXORWOW*, __TOptionData const *,
__TOptionValue*, int, int)
 1.84% 13.088064ms 0ns cudaMalloc
 1.63% 11.595084ms 0ns cudaGetDeviceProperties
 1.08% 7.691710ms 0ns cudaMallocHost
 1.08% 7.660636ms 0ns cudaHostAlloc
 0.89% 6.296326ms 0ns rngSetupStates(curandStateXORWOW*,
int)
 0.78% 5.539428ms 0ns cudaFreeHost
 0.70% 4.998013ms 0ns cudaLaunch
 0.60% 4.259809ms 0ns cuDeviceTotalMem_v2
 0.43% 3.071325ms 0ns cuDeviceGetAttribute
 0.34% 2.447406ms 0ns cudaFree
 0.04% 254.177000us 0ns cuDeviceGetName
 0.02% 108.747000us 0ns cudaMemcpyAsync
 0.01% 58.902000us 0ns cudaSetDevice
 0.01% 52.310000us 0ns cudaStreamDestroy_v5050
 0.00% 19.329000us 0ns cudaEventRecord
 0.00% 18.341000us 0ns cudaEventCreate
 0.00% 17.468000us 0ns cudaSetupArgument
 0.00% 15.729000us 0ns cudaEventDestroy
 0.00% 9.600000us 0ns [CUDA memcpy HtoD]
 0.00% 7.747000us 0ns cudaConfigureCall
 0.00% 7.353000us 0ns cuDeviceGet
 0.00% 6.479000us 0ns cuDeviceGetCount
 0.00% 5.051000us 0ns cudaGetLastError
 0.00% 4.432000us 0ns cudaGetDeviceCount
 0.00% 3.680000us 0ns [CUDA memcpy DtoH]
 0.00% 0ns 23.940847ms cudaEventSynchronize
 0.00% 0ns 6.228596ms cudaDeviceSynchronize
Chapter 4. Measuring and tuning applications 185

Example 4-22 shows application information by using the nvprof flags of --cpu-profiling,
which enable capture operations that are run in CPU.

Example 4-22 Collecting information about operations executed in CPU

$ nvprof --log-file profile.out --cpu-profiling on --cpu-profiling-thread-mode
separated ./MonteCarloMultiGPU 2&> /dev/null
$ cat profile.out

======== CPU profiling result (bottom up):
Time(%) Time Name
======== Thread 17592186332928
 65.66% 650ms cuDevicePrimaryCtxRetain
 65.66% 650ms |
cudart::contextStateManager::initPrimaryContext(cudart::device*)
 65.66% 650ms | cudart::contextStateManager::initDriverContext(void)
 65.66% 650ms |
cudart::contextStateManager::getRuntimeContextState(cudart::contextState**, bool)
 65.66% 650ms | cudart::doLazyInitContextState(void)
 65.66% 650ms | cudart::cudaApiStreamCreate(CUstream_st**)
 65.66% 650ms | cudaStreamCreate
 65.66% 650ms | _ZL11multiSolverP11TOptionPlani
 17.17% 170ms cuInit
 17.17% 170ms | cudart::__loadDriverInternalUtil(void)
 17.17% 170ms | __pthread_once
 17.17% 170ms | cudart::cuosOnce(int*, void (*) (void))
 17.17% 170ms | cudart::globalState::initializeDriver(void)
 17.17% 170ms | cudaGetDeviceCount
 17.17% 170ms | main
 3.03% 30ms ???
 3.03% 30ms | getcontext@@GLIBC_2.17
 2.02% 20ms cuMemFreeHost
 2.02% 20ms | cudart::driverHelper::freeHost(void*)
 2.02% 20ms | cudart::cudaApiFreeHost(void*)
 2.02% 20ms | cudaFreeHost
 2.02% 20ms | closeMonteCarloGPU
 2.02% 20ms cuLaunchKernel
 2.02% 20ms | _ZN6cudartL19cudaApiLaunchCommonEPKvb
 2.02% 20ms | cudaLaunch
 2.02% 20ms | cudaError cudaLaunch<char>(char*)
 2.02% 20ms cuDeviceGetAttribute
 2.02% 20ms | cudart::device::updateDeviceProperties(void)
 2.02% 20ms | cudart::cudaApiGetDeviceProperties(cudaDeviceProp*, int)
 2.02% 20ms | cudaGetDeviceProperties
 1.01% 10ms | _ZL11multiSolverP11TOptionPlani
 1.01% 10ms | adjustGridSize(int, int)
 1.01% 10ms random
 1.01% 10ms | rand
 1.01% 10ms | randFloat(float, float)
 1.01% 10ms | main
 1.01% 10ms | generic_start_main.isra.0
 1.01% 10ms cuMemHostAlloc
 1.01% 10ms | cudart::driverHelper::mallocHost(unsigned long, void**,
unsigned int)
 1.01% 10ms | cudart::cudaApiHostAlloc(void**, unsigned long, unsigned
int)
186 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

 1.01% 10ms | cudaHostAlloc
 1.01% 10ms | _ZL14cudaMallocHostPPvmj
 1.01% 10ms __exp_finite
 1.01% 10ms | exp
 1.01% 10ms | BlackScholesCall
 1.01% 10ms | main
 1.01% 10ms | generic_start_main.isra.0
 1.01% 10ms cuDeviceTotalMem_v2
 1.01% 10ms | cudart::deviceMgr::enumerateDevices(void)
 1.01% 10ms | cudart::globalState::initializeDriverInternal(void)
 1.01% 10ms | cudart::globalState::initializeDriver(void)
 1.01% 10ms | cudaGetDeviceCount
 1.01% 10ms | main
 1.01% 10ms ???
 1.01% 10ms | cudart::contextState::loadCubin(bool*, void**)
 1.01% 10ms | |
cudart::globalModule::loadIntoContext(cudart::contextState*)
 1.01% 10ms | | cudart::contextState::applyChanges(void)
 1.01% 10ms | |
cudart::contextStateManager::getRuntimeContextState(cudart::contextState**, bool)
 1.01% 10ms | | cudart::doLazyInitContextState(void)
 1.01% 10ms | | cudart::cudaApiStreamCreate(CUstream_st**)
 1.01% 10ms | | cudaStreamCreate
 1.01% 10ms | | _ZL11multiSolverP11TOptionPlani
 1.01% 10ms cuMemAlloc_v2
 1.01% 10ms | cudart::driverHelper::mallocPtr(unsigned long, void**)
 1.01% 10ms | cudart::cudaApiMalloc(void**, unsigned long)
 1.01% 10ms | cudaMalloc
 1.01% 10ms | initMonteCarloGPU
 1.01% 10ms __log_finite
 1.01% 10ms | log
 1.01% 10ms | BlackScholesCall
 1.01% 10ms | main
 1.01% 10ms | generic_start_main.isra.0
 1.01% 10ms cuEventSynchronize
 1.01% 10ms cudart::cudaApiEventSynchronize(CUevent_st*)
 1.01% 10ms cudaEventSynchronize
 1.01% 10ms _ZL11multiSolverP11TOptionPlani
======== Thread 21990246248880
 86.87% 860ms ???
 86.87% 860ms | start_thread
 86.87% 860ms | | clone
======== Thread 23089793855920
 68.69% 680ms ???
 68.69% 680ms | start_thread
 68.69% 680ms | | clone
======== Thread 24189306532272
 52.53% 520ms ???
 52.53% 520ms | start_thread
 52.53% 520ms | | clone
======== Thread 25288817111472
 36.36% 360ms ???
 36.36% 360ms | start_thread
 36.36% 360ms | | clone
======== Thread 17592299352496
Chapter 4. Measuring and tuning applications 187

 90.91% 900ms ???
 90.91% 900ms | start_thread
 90.91% 900ms | | clone

======== Data collected at 100Hz frequency

Some tools, such as oprofile and perf, can obtain data out of the PMU in CPU. Also, nvprof
can profile hardware events that are triggered by the GPU and calculate metrics. Use the
--events or --metrics flags to pass a list of events or metrics to the profiler.

Although some available metrics calculate aspects of the GPU efficiency, others can unveil
bottlenecks in specific units (for example, the case of metrics from events involving NVLink
communication. Example 4-23 shows the receive (nvlink_receive_throughput) and transmit
(nvlink_transmit_throughput) throughput metrics for each GPU in the system.

Example 4-23 NVIDIA nvprof: report metrics for NVLink

$ nvprof --log-file profile.out --metrics
nvlink_transmit_throughput,nvlink_receive_throughput ./MonteCarloMultiGPU 2&>
/dev/null
$ cat profile.out
==73977== NVPROF is profiling process 73977, command: ./MonteCarloMultiGPU 2
==73977== Profiling application: ./MonteCarloMultiGPU 2
==73977== Profiling result:
==73977== Metric result:
Invocations Metric Name
Metric Description Min Max Avg
Device "Tesla P100-SXM2-16GB (0)"
 Kernel: rngSetupStates(curandStateXORWOW*, int)
 1 nvlink_transmit_throughput NVLink
Transmit Throughput 1.1570MB/s 1.1570MB/s 976.56KB/s
 1 nvlink_receive_throughput NVLink
Receive Throughput 681.24KB/s 681.24KB/s 0.00000B/s
 Kernel: MonteCarloOneBlockPerOption(curandStateXORWOW*, __TOptionData const *,
__TOptionValue*, int, int)
 1 nvlink_transmit_throughput NVLink
Transmit Throughput 567.64KB/s 567.64KB/s 0.00000B/s
 1 nvlink_receive_throughput NVLink
Receive Throughput 285.74KB/s 285.74KB/s 0.00000B/s
Device "Tesla P100-SXM2-16GB (1)"
 Kernel: rngSetupStates(curandStateXORWOW*, int)
 1 nvlink_transmit_throughput NVLink
Transmit Throughput 177.71KB/s 177.71KB/s 0.00000B/s
 1 nvlink_receive_throughput NVLink
Receive Throughput 244.35KB/s 244.35KB/s 0.00000B/s
 Kernel: MonteCarloOneBlockPerOption(curandStateXORWOW*, __TOptionData const *,
__TOptionValue*, int, int)
 1 nvlink_transmit_throughput NVLink
Transmit Throughput 308.39KB/s 308.39KB/s 0.00000B/s
 1 nvlink_receive_throughput NVLink
Receive Throughput 190.42KB/s 190.42KB/s 0.00000B/s
Device "Tesla P100-SXM2-16GB (2)"
 Kernel: rngSetupStates(curandStateXORWOW*, int)
 1 nvlink_transmit_throughput NVLink
Transmit Throughput 177.16KB/s 177.16KB/s 0.00000B/s
188 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

 1 nvlink_receive_throughput NVLink
Receive Throughput 231.30KB/s 231.30KB/s 0.00000B/s
 Kernel: MonteCarloOneBlockPerOption(curandStateXORWOW*, __TOptionData const *,
__TOptionValue*, int, int)
 1 nvlink_transmit_throughput NVLink
Transmit Throughput 568.43KB/s 568.43KB/s 0.00000B/s
 1 nvlink_receive_throughput NVLink
Receive Throughput 284.86KB/s 284.86KB/s 0.00000B/s
Device "Tesla P100-SXM2-16GB (3)"
 Kernel: rngSetupStates(curandStateXORWOW*, int)
 1 nvlink_transmit_throughput NVLink
Transmit Throughput 1.1607MB/s 1.1607MB/s 976.56KB/s
 1 nvlink_receive_throughput NVLink
Receive Throughput 703.26KB/s 703.26KB/s 0.00000B/s
 Kernel: MonteCarloOneBlockPerOption(curandStateXORWOW*, __TOptionData const *,
__TOptionValue*, int, int)
 1 nvlink_transmit_throughput NVLink
Transmit Throughput 309.12KB/s 309.12KB/s 0.00000B/s
 1 nvlink_receive_throughput NVLink
Receive Throughput 186.25KB/s 186.25KB/s 0.00000B/s

Use the --query-metrics or --query-events flags to list all of the metrics and events that are
available for profiling.

Another useful function of nvprof is to generate traces of the application execution. Those
traces can be then imported in the NVIDIA Visual Profiler tool. For more information, see the
NVIDIA Visual Profiler website.

For more information about the nvprof tool, see the Profiler User’s Guide.
Chapter 4. Measuring and tuning applications 189

http://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://developer.nvidia.com/nvidia-visual-profiler

190 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Part 2 Administrator’s guide

This part provides administrators with information about how to deploy the hardware and
software in the cluster. This part also includes a cluster monitoring and health check of the
cluster to help administrators manage the day-to-day operation and health of the
environment.

The following chapters are included in this part:

� Chapter 5, “Node and software deployment” on page 193
� Chapter 6, “Cluster monitoring and health checking” on page 289

Part 2
© Copyright IBM Corp. 2017. All rights reserved. 191

192 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Chapter 5. Node and software deployment

This chapter describes the software deployment of an Extreme Cluster/Cloud Administration
Toolkit (xCAT) cluster with the IBM High Performance Computing (HPC) software. The cluster
runs on Red Hat Enterprise Linux (RHEL) Server 7.3 for PowerPC 64-bit Little-Endian
(ppc64le) in non-virtualized (or bare-metal) mode on an IBM Power System S822LC server.
An IBM Power System S812LC server is the management server.

This chapter includes the following topics:

� 5.1, “Software stack” on page 194
� 5.2, “System management” on page 194
� 5.3, “xCAT overview” on page 201
� 5.4, “Initial xCAT Management Node installation on S812LC” on page 208
� 5.5, “xCAT node discovery” on page 225
� 5.6, “xCAT Compute Nodes (stateless)” on page 237
� 5.7, “xCAT Login Nodes (stateful)” on page 285

5

© Copyright IBM Corp. 2017. All rights reserved. 193

5.1 Software stack

The following software stack components and versions are referenced in this chapter:

� Extreme Cluster/Cloud Administration Toolkit (xCAT) 2.12.4
� Red Hat Enterprise Linux (RHEL) Server 7.3
� Compute Unified Device Architecture (CUDA) Toolkit 8 (8.0.54)
� Mellanox OpenFabrics Enterprise Distribution (OFED) for Linux 3.4 (3.4-2.0.0.1)
� XL C/C++ Compiler for Linux V13.1.5
� XL Fortran Compiler for Linux V15.1.5
� Advance Toolchain 10.0
� PGI Compiler 16.10
� Spectrum MPI (SMPI) 10.1.0.2
� Parallel Performance Toolkit (PPT) 2.3
� Engineering and Scientific Subroutine Library (ESSL) 5.5
� Parallel ESSL (PESSL) 5.3
� Spectrum Scale (formerly GPFS) 4.2.x.3
� Spectrum LSF (formerly Platform LSF) 10.1.0.1
� Scale-Out LC System Firmware (OP820.01/PNOR OP8_v1.11_2.19/BMC 2.13.00058)
� Intelligent Platform Management Interface (IPMI) tool (IPMItool) 1.8.15

For more information about the currently supported and recommended software versions, see
the Wikis page of the IBM developerWorks website.

5.2 System management

This chapter describes system management functions (or operations) for the IBM Power
System S822LC server that is based on the IPMI protocol, and uses the IPMItool utility. Some
functions require IPMItool version 1.8.15 or later, such as system firmware upgrade.

This section includes the following topics:

� Frequently used commands for IPMItool
� Configure the boot order in the Petitboot bootloader
� Upgrade the system firmware of the IBM Power System S822LC server

5.2.1 Frequently used commands with the IPMItool

The ipmitool command features the following most noteworthy options:

� -H <address>: The host name of the baseboard management controller (BMC).

� -U <username>: The remote server user name (default is ADMIN in POWER8).

� -P <password>: The remote server password (default is admin in POWER8).

� -I <interface>: The interface type of the connection (defaults to lan, lanplus is needed for
some commands. In any case, lanplus is the preferred interface).

The following ipmitool commands are most useful for monitoring BMCs:

� chassis retrieves chassis status and sets the power states.
� sol facilitates Serial-over-Lan connections.
� mc interacts with the management controller.
� lan configures the network interface.
194 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://ibm.co/2hloBzQ

By using the chassis command, you can power the node on and off, and get the status of the
node power. Example 5-1 shows the node in the off state and powered on. Use the cycle
keyword to perform a power cycle (off, then on).

Example 5-1 The chassis command

$ ipmitool -H <IP> -U ADMIN -P admin chassis status
System Power : off
Power Overload : false
Power Interlock : inactive
Main Power Fault : false
Power Control Fault : false
Power Restore Policy : always-off
Last Power Event : command
Chassis Intrusion : inactive
Front-Panel Lockout : inactive
Drive Fault : false
Cooling/Fan Fault : false
Front Panel Control : none

$ ipmitool -H <IP> -U ADMIN -P admin chassis power on
Chassis Power Control: Up/On

$ ipmitool -H <IP> -U ADMIN -P admin chassis status
System Power : on
...

The sol command is used to establish a serial connection to the specified node. This
command requires the lanplus interface to function, and only one serial connection can be
started at any time. This tool is typically used when the OS of the node is no longer reachable
through ssh. Example 5-2 shows how to establish a sol connection to a node with a
connection.

Example 5-2 The sol command

$ ipmitool -H <IP> -U ADMIN -P admin -I lanplus sol activate
Info: SOL payload already active on another session
$ ipmitool -H <IP> -U ADMIN -P admin -I lanplus sol deactivate
$ ipmitool -H <IP> -U ADMIN -P admin -I lanplus sol activate
[SOL Session operational. Use ~? for help]

p8r1n1 login:

You can also close an active console session with the following keystrokes:

� On a non-Secure Shell (SSH) connection:

Enter, ~ (tilde1), . (period)

� On an SSH connection:

Enter, ~ (tilde), ~ (tilde), . (period)

1 On keyboards with dead keys (for example, on some non-English languages), the tilde mark requires two
keystrokes: Tilde and space.

Note: This command can close an SSH connection, which can leave the console
session open.
Chapter 5. Node and software deployment 195

The mc command is used to perform management console functions. Typically, this command
is used only when the BMC is no longer responsive to commands (such as chassis).

Example 5-3 shows the most common use of this command to reset the BMC.

Example 5-3 The mc reset command

$ ipmitool -H <IP> -U ADMIN -P admin mc reset cold
Sent cold reset command to MC

The lan command is used to configure the BMC network interface. The following important
arguments can be included:

� Display the BMC Ethernet Port network configuration:

$ ipmitool <arguments> lan print 1

� Set the BMC Ethernet Port for Dynamic Host Configuration Protocol (DHCP) IP address:

$ ipmitool <arguments> lan set 1 ipsrc dhcp

� Set the BMC Ethernet Port for Static IP address:

$ ipmitool <arguments> lan set 1 ipsrc static
$ ipmitool <arguments> lan set 1 ipaddr a.b.c.d
$ ipmitool <arguments> lan set 1 netmask e.f.g.h
$ ipmitool <arguments> lan set 1 defgw i.j.k.l

For more information about other ipmitool commands, see 6.3, “Using the BMC for node
monitoring” on page 300.

5.2.2 Boot order configuration

The Petitboot bootloader can automatically boot (or autoboot) from several types of devices in
a certain order (that is, falling back to later devices if earlier devices cannot be booted from).

This scenario requires a specific configuration of the device boot order (specifically, for
Genesis-based node discovery, and diskful installation, which are described in 5.3, “xCAT
overview” on page 201). It is important for Petitboot to first attempt to boot from the network
devices by way of DHCP. If the network devices are not available, it attempts to boot from the
disk devices. In such order, the node can obtain its network and boot configuration from the
xCAT management node (for example, the Genesis image or diskless installation), or fall back
to boot an OS from disk if network boot is not specified (for example, diskful installation).

To configure the boot order in the Petitboot bootloader, complete the following steps:

1. Power on the system, as shown in the following example:

$ ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
chassis power on

2. Open the console, as shown in the following example:

$ ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
sol activate

Note: This command leaves the SSH connection open and closes the console session.
196 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

3. Wait for the Petitboot panel (see Example 5-4).

Example 5-4 Petitboot panel

Petitboot (v1.2.6-8fa93f2) 8335-GTB 0000000000000000

System information
System configuration
Language
Rescan devices
Retrieve config from URL
*Exit to shell

Enter=accept, e=edit, n=new, x=exit, l=language, h=help
Welcome to Petitboot

4. Configure boot order for Petitboot. In the Petitboot panel, select System configuration.

5. In the Petitboot System Configuration panel (see Example 5-5), complete the following
steps:

a. In the Boot order section, complete the following steps:

i. Select Clear.

i. Select Add Device.

ii. In the Select a boot device to add panel (see Example 5-6 on page 198), select
Any Network device, and click OK.

iii. Select Add Device again.

iv. In the Select a boot device to add panel again, select Any Disk device, and click
OK.

v. Verify that the Boot order section is identical to Example 5-7 on page 198.

b. In the Network section, select the DHCP on a specific interface option.

c. In the Device section, select the network interface for accessing the xCAT
Management Node (if you selected DHCP on a specific interface in the Network
section).

d. Click OK.

Example 5-5 Petitboot System Configuration panel, DHCP on a specific interface setting

Petitboot System Configuration

Boot Order: (None)

[Add Device]
[Clear & Boot Any]
[Clear]

Network: () DHCP on all active interfaces
(*) DHCP on a specific interface
() Static IP configuration

Note: You can select the DHCP on all active interfaces option, but that option
might slow the boot process unnecessarily if multiple network ports are cabled and
active.
Chapter 5. Node and software deployment 197

Device: () enP5p7s0f0 [70:e2:84:14:09:ae, link up]
(*) enP5p7s0f1 [70:e2:84:14:09:af, link up]

DNS Server(s): _______________________________ (eg. 192.168.0.2)
(if not provided by DHCP server)

Disk R/W: () Prevent all writes to disk
(*) Allow bootloader scripts to modify disks

[OK] [Help] [Cancel]

tab=next, shift+tab=previous, x=exit, h=help

Example 5-6 shows the panel to select a boot device.

Example 5-6 Select a boot device to add panel (any Network Device setting)

Select a boot device to add

() net: enP1p3s0f0 [mac: 98:be:94:59:fa:24]
() net: enP1p3s0f1 [mac: 98:be:94:59:fa:25]
(*) Any Network device
() Any Disk device
() Any USB device
() Any CD/DVD device
() Any Device

[OK] [Cancel]

 tab=next, shift+tab=previous, x=exit, h=help

Example 5-7 shows the petitboot system configuration option panel.

Example 5-7 Petitboot System Configuration panel, Boot Order configuration

Petitboot System Configuration

Boot Order: (0) Any Network device
(1) Any Disk device

[Add Device]
[Clear & Boot Any]
[Clear]

<...>

On the next boot, the Petitboot bootloader can automatically boot from the network and disk
devices in the specified order. On this boot, no automatic boot attempt is made because of
user intervention.

5.2.3 System firmware upgrade

The IPMItool version 1.8.15 or later can be used to upgrade the system firmware of the IBM
Power System S822LC. Run the ipmitool command from the same or a close local area
network (LAN) to the target system or BMC to avoid network instability problems.
198 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

To upgrade the system firmware, complete the following steps:

1. Download the system firmware image:

a. Go to the IBM Support website for the 8335-GTB server.

b. In the results list, click the wanted version (for example, OP8_v1.11_2.19). Usually, the
latest version is suggested for the general case.

c. Proceed with the sign-in process.

d. Select a download option (for example, HTTPS).

e. Click the 8335_<version>_update.hpm link to download the file (for HTTPS; for other
methods, follow the instructions that are provided in the website).

f. (Optional) Click the Description link for more information about the firmware version.

2. Install the system firmware image:

a. Power off the system by using the following command:

$ ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
chassis power off

Chassis Power Control: Down/Off

Wait until the system is powered off. You can verify it by using the following command:

$ ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
chassis power status

Chassis Power is off

b. Reset the BMC by using the following command:

$ ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
mc reset cold

Sent cold reset command to MC

Wait until the BMC is back online. You can verify it by using the following command
(repeat as necessary):

$ ping -c1 bmc-address
<...>
1 packets transmitted, 1 received, 0% packet loss, time 0ms
<...>

c. Protect the BMC memory content (for example, network configuration) during upgrade
by using the following command:

$ ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
raw 0x32 0xba 0x18 0x00

d. Upgrade the system firmware image (see Example 5-8 on page 200). Consider the
following points about the process:

• You might be asked to confirm the operation; if so, press y and Enter.

• The output can vary depending on the old and new firmware versions that are used.

• If segmentation fault errors occur, change the -z argument to 25000.

• If you lose the network configuration, establish a serial connection to the internal
serial port and configure it by using the ipmitool command on the 127.0.0.1 IP
address.

For more information and about errors, see the Description link in the system firmware
image download page.
Chapter 5. Node and software deployment 199

http://www.ibm.com/support/fixcentral/swg/quickorder?parent=Scale-out%20LC&product=ibm/power/8335GTB&release=OP820&platform=All&function=all&source=fc

Example 5-8 One step of the system firmware upgrade with the ipmitool command

$ ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
-z 30000 hpm upgrade 8335_<version>_update.hpm force

Setting large buffer to 30000

PICMG HPM.1 Upgrade Agent 1.0.9:

Validating firmware image integrity...OK
Performing preparation stage...
Services be affected during upgrade. Do you wish to continue? (y/n): y
OK

Performing upgrade stage:

--
|ID | Name | Versions | % |
		Active	Backup	File	
* 2	BIOS	0.00 00000000	---.-- --------	1.00 3E010701	100%
	Upload Time: 00:27	Image Size: 33554584 bytes			
* 0	BOOT	2.13 7B4E0100	---.-- --------	2.13 AB660100	100%
	Upload Time: 00:00	Image Size: 262296 bytes			
* 1	APP	2.13 7B4E0100	---.-- --------	2.13 AB660100	100%
	Upload Time: 00:16	Image Size: 33292440 bytes			
--
(*) Component requires Payload Cold Reset

Firmware upgrade procedure successful

e. Power on the system by using the following command:

$ ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
chassis power on

Chassis Power Control: Up/On

f. Open the console, by using the following command:

$ ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
sol activate

g. Wait for the Petitboot panel (see Example 5-4 on page 197).

If the IPMI console is not responsive to any keys, try to reset the BMC again.

3. Verify that the system firmware version matches the wanted or downloaded version, as
shown in the following example:

$ ipmitool -I lanplus -H bmc-address -U ipmi-username -P ipmi-password \
fru print 47

Product Name : OpenPOWER Firmware
 Product Version : IBM-garrison-ibm-OP8_v1.11_2.19
 Product Extra : op-build-6ce5903

Note: The system firmware upgrade completes only after the system is powered on.

Note: Only approximately 20 ISTEP lines are required (earlier than Petitboot).
200 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

 Product Extra : buildroot-81b8d98
 Product Extra : skiboot-5.3.7
 Product Extra : hostboot-1f6784d-02b09df
 Product Extra : linux-4.4.24-openpower1-5d537af
 Product Extra : petitboot-v1.2.6-8fa93f2
 Product Extra : garrison-xml-3db7b6e
 Product Extra : occ-69fb587
 Product Extra : hostboot-bina

5.3 xCAT overview

This section provides an overview of the architecture and concepts that are involved in a
cluster that is administered with xCAT (that is, an xCAT cluster), and the scenario that is
described in this chapter.

xCAT manages the nodes in a cluster by using continuous configuration and event handling.
The xCAT database contains the required information to perform the configuration steps.
Several services and commands (for example, DHCP server, and xCAT administration
commands) trigger and respond to events, such as node booting, node discovery, and
installing an operating system (OS) and other software.

For more information, see the following xCAT resources:

� xCAT website
� Extreme Cloud/Cluster Administration Toolkit documentation

5.3.1 xCAT cluster: Nodes and networks

An xCAT cluster is several nodes that are interconnected by one or more networks.

The type of node depends on its function in the cluster (for example, management, compute,
login, or service node). The type of network depends on its traffic and interconnected nodes
(for example, operating system-level management and provisioning, service processor-level
hardware management, application-level intercommunication, and public/Internet access).

The following types of nodes are available in an xCAT cluster:

� Management node

This node performs administrative operations on compute nodes; for example, power
control, software deployment (OS provisioning, application installation, and updates),
configuration, command execution, and monitoring.

� Compute nodes

This node perform operations that are specified by the management node; for example,
OS provisioning and command execution, and runs the runtime and application software.
Compute nodes are sometimes referred to as nodes.

� Login nodes

This node is an interface to the users of the clusters, which enables tasks, such as job
submission and source-code compilation.
Chapter 5. Node and software deployment 201

https://xcat.org
https://xcat-docs.readthedocs.org
https://xcat.org
https://xcat-docs.readthedocs.org

� Service nodes

This node performs operations that are delegated by the management node on groups of
nodes, and respond to requests from a set of other nodes, acting as intermediary
management nodes on large clusters. An xCAT cluster with service nodes is known as a
hierarchical cluster.

The following types of networks are available in an xCAT cluster:

� Management network:

– Used for in-band operations (that is, through the system’s network interface); for
example, node discovery, OS provisioning, and management.

– Interconnects the management node, service nodes (if any), login nodes (if any), and
compute nodes, all by way of the in-band network interface controller (NIC).

– Possibly segregated into separate virtual LANs (VLANs) for each service node.

– Usually an Ethernet network of high transfer speed, depending on the number of
compute nodes and frequency of OS provisioning, software download, and installation
operations.

� Service network:

– Used for out-of-band operations (that is, through the BMC’s network interface); for
example, power control, console sessions, and platform-specific functions.

– Interconnects the management node and service nodes (by way of the in-band NIC),
and the other nodes (by way of the out-of-band NIC).

– Possibly combined with the management network (same physical network).

– Usually an Ethernet network, but does not need to use as high a transfer speed as the
management node because the network traffic of out-of-band operations is often of a
smaller size and lower frequency.

� Application network:

– Used by applications that are running on compute nodes.
– Interconnects the compute nodes.
– Usually an InfiniBand network for HPC applications.

� Optional: Site (public) network:

– Used for directly accessing the management node, and other nodes.
– Interconnects the site gateway, and nodes (by way of in-band NIC).
– Can provide the cluster with access to the internet.
– Can be combined with the management node (same physical network).
– Usually an Ethernet network.
202 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

5.3.2 xCAT database: Objects and tables

The xCAT database contains all information that relates to the cluster. This information is
defined by an administrator or automatically obtained from the cluster, such as nodes,
networks, services, and configuration for any services that are used by xCAT (for example,
DNS, DHCP, HTTP, and NFS).

All data is stored in tables and can be manipulated directly as tables (for example, nodelist,
networks, nodegroup, osimage, or site) or logically as objects (or object definitions) of certain
types (for example, node, network, group, osimage, or site) by using the following
commands:

� Objects:

– View: lsdef
– Create: mkdef
– Change: chdef
– Remove: rmdef

� Tables:

– View: tabdump
– Change: tabedit or chtab

On certain tables or object attributes (typically on per-node attributes), you can use regular
expressions to set an attribute’s value according to the name of the respective object (for
example, the IP address of compute nodes).

The xCAT database is stored in a SQLite database by default. Powerful open source
database engines, such as MySQL, MariaDB, and PostgreSQL are also supported for a large
clusters.

For more information, see the xCAT database manual page by using the following command:

$ man 5 xcatdb

5.3.3 xCAT node booting

The xCAT management node can control the boot method (or device) of the compute nodes
by using the following methods:

� Change the temporary boot device configuration of the bootloader by way of IPMI.

� Change the network boot configuration that is provided to the bootloader by way of DHCP.

� Do not provide a network boot configuration to the bootloader, which allows it to boot from
other device than network adapters.

The methods that are based in the network boot configuration require the correct automatic
boot (or autoboot) configuration in the bootloader, and dynamic configuration of DHCP and
Trivial File Transfer Protocol (TFTP) servers with general and per-node settings.

New or undiscovered nodes can be booted into node discovery, and known or discovered
nodes into arbitrary stages (for example, OS provisioning, installed OS, basic shell
environment, or node discovery again).
Chapter 5. Node and software deployment 203

For that purpose, the nodes’ bootloader must be configured to automatically boot with the
following device order: Primarily, from the network interface on the xCAT management
network (to obtain network and boot configuration by way of DHCP/TFTP from the xCAT
management node), and secondarily from local disks. For more information, see 5.2.2, “Boot
order configuration” on page 196.

On that foundation, any boot image can be specified by the xCAT management node through
DHCP to a node, retrieved by the node through TFTP, and booted. If no boot image is
specified, the node proceeds to boot from disk, which can contain an OS installation that is
already provisioned.

5.3.4 xCAT node discovery

The xCAT node discovery (or node discovery process) consists of booting a new (or
undiscovered) node and allowing the management node to identify (or discover) the node by
using some specific method.

For example, during boot, the node can be offered a special-purpose boot image by the
management node. This process is called genesis (basically, a Linux kernel and a custom
initial RAM file system, or initramfs). Genesis collects identification and hardware information
about the node, informs the management node about it, and waits for instructions. The
management node can then configure and control the discovered node (for example, based
on object definitions).

The following node discovery methods are available in xCAT, ranging between more manual
and more automatic:

� Manual node definition (not really “discovery”)

� Machine Type and Model, and Serial number-based (MTMS) discovery (adopted in this
chapter)

� Sequential discovery

� Switch-based discovery

For more information about node discovery methods, see the xCAT Hardware Discovery &
Define Node documentation page.

For example, the MTMS-based discovery can be summarized in the following sequence:

1. The new or undiscovered node is powered on, and the bootloader requests a network
address and boot configuration.

2. The xCAT management node does not recognize the node; that is, the Media Access
Control (MAC) address in the request. It provides the node with a temporary network
address and pointers to the node discovery boot image.

3. The node applies the network configuration, downloads the node discovery boot image,
and boots it.

4. The boot image collects hardware information (for example, the system’s machine type
and model, serial number, network interfaces’ MAC address, and processor and memory
information) and reports it back to the xCAT management node.

5. The xCAT management node attempts to match part of the reported hardware information
to a node object definition (currently, the system’s machine-type and model, and serial
number).
204 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/ppc64le/discovery/index.html
https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/ppc64le/discovery/index.html

6. If a match is identified, the xCAT management node then configures that node according
to its object definition (for example, network configuration and next stages to perform) and
updates that object definition with any new hardware information.

The node can then respond to in-band or OS-level management operations through SSH on
its IP address (which is available on the running Genesis image).

After node discovery, the new or undiscovered node becomes a known or discovered node
and supports in-band operations; for example, OS provisioning, software installation, and
configuration, from the xCAT management node.

5.3.5 xCAT BMC discovery

The xCAT BMC discovery occurs automatically after node discovery. It can be summarized in
the following sequence:

1. The xCAT management node attempts to match the node object definition to a temporary
BMC object definition (with machine type and model, and serial number information) for
new or undiscovered BMCs.

2. If a match is identified, the xCAT management node configures the BMC according to the
BMC attributes in the node object definition (for example, network configuration) and
removes the temporary BMC object.

The node can then respond to out-of-band management operations through IPMI on its
BMC’s IP address.

The BMC becomes a discovered BMC, and the corresponding node supports out-of-band
operations (for example power control and monitoring) by way of its object definition in the
xCAT management node.

5.3.6 xCAT OS installation types: Disks and state

The xCAT management node can support the following methods for provisioning an OS and
providing persistent state (data) to the compute nodes according to availability of disks and
persistency requirements:

� Diskful and Stateful

The OS is installed to disk and loaded from disk. Changes are written to disk (persistent).

� Diskless and Stateless

The OS is installed by using a different and contained method in the management node
and loaded from the network. Changes are written to memory and discarded (not
persistent).

Note: The Genesis image contains the IPMItool utility, which is available for running IPMI
commands both out-of-band (by way of the BMC IP address) and in-band (by way of the
internal connection between the system and BMC, independently of network
configuration).

This function is specially useful if problems occur when the BMC network is configured,
which can render it unresponsive out-of-band, but still responsive in-band.
Chapter 5. Node and software deployment 205

� Diskless and Statelite

An intermediary type between stateless and stateful. The OS is installed by using a
different and contained method in the management node and loaded from the network.
Changes are written to memory and can be stored (persistent) or discarded (not
persistent).

For more information about OS provisioning and state persistency, see the xCAT IBM Power
LE / OpenPOWER documentation page.

5.3.7 xCAT network interfaces: Primary and additional

In xCAT terminology, a network adapter or interface2 in a node can be primary or additional
(also known as secondary). Only one primary network adapter exists, and zero or more
additional network adapters can exist.

The primary network interface of a node connects to the xCAT management network (that is,
to the management node), and is used to provision, boot, and manage that node.

An additional network interface connects to an xCAT network other than the xCAT
management network and xCAT service network. Therefore, it is used by xCAT application
networks, xCAT site networks or public networks, or for other purposes.

For more information, see the xCAT Configure Additional Network Interfaces - confignics
documentation page.

5.3.8 xCAT software kits

The xCAT provides support to a software package format that is called xCAT Software Kits
(also known as xCAT kits or kits) that is tailored for installing software in xCAT clusters. Kits
are used with some products of the IBM HPC Software stack.

An xCAT software kit can include a software product’s distribution packages, configuration
information, scripts, and other files. It also includes xCAT-specific information for installing the
appropriate product pieces, which are referred to as the kit components, to a particular node
according to its environment and role in the xCAT cluster.

The kits are distributed as tarballs, which are files with the .tar extension. The kits can be
either complete or incomplete (which are also known as partial), which indicates whether a kit
contains the packages of a product (complete) or not (incomplete/partial).

The incomplete or partial kits are indicated by file names with the NEED_PRODUCT_PKGS string,
which can be converted to complete kits when combined with the product’s distribution
packages. Incomplete or partial kits are usually distributed separately from the product’s
distribution media.

After a complete kit is added to the xCAT management node, its kit components can be
assigned or installed to new and existing OS installations.

For more information about xCAT Software Kits, see the xCAT Software Kits documentation
page.

2 The term network interface can be more precise and unambiguous because a single network adapter can provide
multiple network interfaces (for example, one interface per port, or virtual interfaces) to the OS.
206 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://xcat-docs.readthedocs.io/en/2.11/advanced/kit/index.html
http://xcat-docs.readthedocs.io/en/2.11/advanced/kit/index.html
https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskless/customize_image/cfg_second_adapter.html
https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskless/customize_image/cfg_second_adapter.html
https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/ppc64le/index.html
https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/ppc64le/index.html

5.3.9 xCAT synchronizing files

Synchronizing (sync) files to the nodes is a feature of xCAT used to distribute specific files
from the management node to the new-deploying or deployed nodes.

This function is supported for diskful or diskless nodes. Generally, the specific files are usually
the system configuration files for the nodes in the /etc directory, like /etc/hosts,
/etc/resolve.conf. It can also be the application programs configuration files for the nodes.
The advantages of this function are: It can parallel sync files to the nodes or nodegroup for
the installed nodes and it can automatically sync files to the newly installing node after the
installation. Additionally, this feature also supports the flexible format to define the synced
files in a configuration file, called synclist.

The synclist file can be a common file for a group of nodes that use the same profile or
osimage, or can be the special one for a particular node. Considering that the location of the
synclist file is used to find the synclist file, the common synclist is put in a specific location for
Linux nodes or specified by the osimage.

For more information about xCAT file synchronization, see the xCAT Synchronizing Files
documentation page.

5.3.10 xCAT version

This section describes xCAT version 2.12.4, which includes the following functions:

� RHEL Server 7.3 support for PowerPC 64-bit Little-Endian (ppc64le):

– Provisioning types: Diskful/stateful and diskless/stateless
– Support for CUDA Toolkit for NVIDIA GPUs
– Support for Mellanox OFED for Linux for Mellanox InfiniBand adapters
– Support for kits with the IBM HPC Software
– Support for non-virtualized (or bare-metal) mode

� Power System S822LC server with OPAL firmware:

– Hardware discovery for BMCs
– Hardware management with IPMI

For more information, see the xCAT 2.12.4 release website.

5.3.11 xCAT scenario

This chapter adopts the following xCAT networks and network addresses (it follows the
network setup that is described in Figure 1-1 on page 5):

� Network address scheme: 10.network-number.0.0/16 (16-bit network mask)
� Management (OS) network (10 Gigabit Ethernet): 10.1.0.0/16
� Service (BMC) network (1 Gigabit Ethernet): 10.2.0.0/16
� High-performance interconnect (InfiniBand): 10.10.0.0/16
� Site network (1 Gigabit Ethernet): 9.x.x.x/24

Update: After this publication was written, xCAT 2.13 was announced. For more
information, see the xCAT 2.13 Release Notes website.

Note: Depending on the adapters in the systems, the number and type of network
interfaces can differ.
Chapter 5. Node and software deployment 207

https://github.com/xcat2/xcat-core/wiki/XCAT_2.13_Release_Notes
https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskful/customize_image/syncfile.html
https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskful/customize_image/syncfile.html
https://github.com/xcat2/xcat-core/wiki/XCAT_2.12.4_Release_Notes
https://github.com/xcat2/xcat-core/wiki/XCAT_2.13_Release_Notes
https://github.com/xcat2/xcat-core/wiki/XCAT_2.13_Release_Notes
https://github.com/xcat2/xcat-core/wiki/XCAT_2.13_Release_Notes

The management and service networks are not combined in a single network interface for this
setup. For 8335-GTB servers, it is recommended to use two physical cables, which allows the
BMC port to be dedicated. Therefore, one port is used by the OS only.

For more information, see the xCAT noboot documentation website.

The network switch VLAN configuration can ensure that the management node can access
all nodes’ in-band and out-of-band (BMC) network interfaces, and that the non-management
nodes can access only in-band network interfaces (but not out-of-band network interfaces).

The IP addresses are assigned to the nodes according to the following scheme:

� IP address: 10.network-number.rack-number.node-number-in-rack

� xCAT management node: 10.network-number.0.1

� Temporary IP addresses (the dynamic range):
10.network-number.254.sequential-number

The host names (or node names) are assigned to the POWER8 (thus, p8) compute nodes
according to the following naming scheme:

� Node naming scheme: p8r<rack-number>n<node-number-in-rack>

� For example, for five racks and six systems per rack: p8r1n1, p8r1n2, ..., p8r2n1,
p8r2n2,... p8r5n6

The following IPMI credentials are adopted for the BMCs:

� Username: ADMIN
� Password: admin

5.4 Initial xCAT Management Node installation on S812LC

This section describes the deployment of the xCAT Management Node with RHEL Server 7.3
for PowerPC 64-bit Little-Endian (ppc64le) in non-virtualized (or bare-metal) mode on the IBM
Power System S812LC server. The S812LC is a single socket POWER8 server with two rear
3.5-inch disks and up to 12 3.5-inch front disks. It is the perfect management server for a
S822LC node HPC Cluster.

After you complete the steps that are described in this section, the Management Node is
ready for the configuration and execution of the xCAT Node Discovery process on other
nodes in the cluster.

For more information, see the xCAT Extreme Cloud/Cluster Administration Toolkit
documentation website. At the website, see the following resources:

� Installation Guide for Red Hat Enterprise Linux (click Install Guides → Installation Guide
for Red Hat Enterprise Linux)

� Configure xCAT section (click Admin Guide → Manage Clusters → IBM Power LE /
OpenPOWER → Configure xCAT)
208 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

https://xcat-docs.readthedocs.io
https://xcat-docs.readthedocs.io
https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/ppc64le/configure/networks.html#noboot

5.4.1 RHEL server

You can install RHEL server by using one of the following methods:

� Virtual media (with the BMC ASM interface)
� Network boot server
� USB device
� Network installation (for example, by way of HTTP)

This chapter describes the installation process that uses two USB flash drives. This method is
recommended because it is the easiest method and has the least dependencies. The OS is
installed on the two rear disks by using this method.

For more information about other installation methods, see the following resources:

� The RHEL 7 Installation Guide at the Red Hat documentation website

� The Installing Linux on OPAL POWER8 systems documentation at the IBM Knowledge
Center website

Prerequisites
The following components are required for the USB flash drive installation:

� A computer that is running Linux (recommended), macOS, or Windows

� Access to RHEL server 7.3 ISO

� Two USB flash drives (one drive must be at least 4 GB)

� One of the following means to navigate in petitboot:

– Network connection to BMC and ipmitool (recommended)
– Serial connection
– VGA monitor and USB keyboard

Configure BMC IP
Before installing the system, configure the BMC so that the installation can be performed
remotely from your desk:

1. Initial the BMC configuration by using one of the following methods:

a. Connect a USB keyboard and a VGA monitor to the server.

b. Use a notebook with a serial connection to the server. For more information, see the
Connecting to your server with a serial console connection page of the IBM Knowledge
Center website.

2. Power on your server by pressing the power button on the front of your system.
Your system powers on to the Petitboot panel. This process takes approximately 1 - 2
minutes to complete.

3. At the Petitboot bootloader main menu, select Exit to shell.

Note: It is not possible to use optical media because optical drives are not supported.

Note: Do not walk away from your system. When Petitboot loads, your monitor
becomes active and you must push any key to interrupt the boot process.
Chapter 5. Node and software deployment 209

https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liabw/liabwserialconnection.htm
http://ibm.com/support/knowledgecenter/linuxonibm/liabw/liabwinstalllc.htm
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/
https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liabw/liabwserialconnection.htm
https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liabw/liabwserialconnection.htm
https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liabw/liabwserialconnection.htm

4. Set the BMC network settings for the first channel:

a. Set mode to static:

$ ipmitool lan set 1 ipsrc static

b. Set BMC IP address:

$ ipmitool admin lan set 1 ipaddr <ipaddr>

c. Set netmask:

$ ipmitool admin lan set 1 netmask <netmask>

d. Set default gateway server:

$ ipmitool lan set 1 defgw ipaddr <gateway_server>

5. Verify the new configuration by using the following command:

$ ipmitool lan print 1
<...>
IP Address Source : Static Address
IP Address : 9.x.x.x
Subnet Mask : 255.255.255.0
MAC Address : 70:e2:84:14:09:ad
<...>
Default Gateway IP : 9.x.x.x
Default Gateway MAC : 98:be:94:00:47:84
Backup Gateway IP : 0.0.0.0
Backup Gateway MAC : 00:00:00:00:00:00
802.1q VLAN ID : Disabled
802.1q VLAN Priority : 0
<...>

6. To activate the new configuration, you must reset the BMC by using the following
command:

$ ipmitool mc reset cold

7. Wait approximately 3 minutes. Then, attempt to ping the BMC IP to test the new
configuration.

Acquiring network device name
Complete the following steps to acquire the network device name for the RHEL installation:

1. Open the Serial Over LAN (SOL) console to the previously configured BMC, as shown in
the following example (the default BMC username and password is: ADMIN:admin):

$ ipmitool -I lanplus -H <bmc-ip> -U <username> -P <password> sol activate

2. Check that the system is turned on, as shown in the following example:

$ ipmitool -I lanplus -H <bmc-ip> -U <username> -P <password> chassis power on

Note: If your ping does not return successfully, complete the following steps:

1. Power your system off by using the ipmitool power off command.

2. Unplug the power cords from the back of the system. Wait 30 seconds and then,
apply power to boot BMC.

Note: Alternatively, you can use the serial connection at the node. For more
information, see “Configure BMC IP” on page 209.
210 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

3. Wait for the Petitboot panel and choose System information, as shown in Example 5-9.

Example 5-9 Petitboot system information panel

Petitboot System Information
 ••
 Network interfaces
 enp1s0f0:
 MAC: 98:be:94:68:ab:e8
 link: down

 enp1s0f1:
 MAC: 98:be:94:68:ab:e9
 link: down

 enp1s0f2:
 MAC: 98:be:94:68:ab:ea
 link: up

 enp1s0f3:
 MAC: 98:be:94:68:ab:eb
 link: down

 tunl0:
 MAC: 00:00:00:00:08:00
 ••
 x=exit, h=help

Look for the link: up to locate which adapters have cables that are connected. In our
example, enp1s0f2 is the adapter that is connected to the site LAN (all other cables are
not connected yet). The network device name is needed as described in “Editing
kickstarter file for second USB flash drive” on page 212.

4. Leave the serial console open because it is needed during the process to prepare the
USB flash drives, which is described next. To close the console, use the ~.

Preparing the USB flash drives
We created a kickstarter file for you that helps to complete the basic installation and
configuration (“Editing kickstarter file for second USB flash drive” on page 212) process. This
kickstarter file creates a software RAID1 (mdraid) on both rear disks, disables the firewall and
selinux (required by xCAT), and configures the initial network interface.

Prepare the following USB flash drives:

� USB flash drive with the main RHEL server 7.3 installation ISO
� USB flash drive with the kickstarter configuration file

You must edit the kickstarter file and adapt it for your environment. For more information, see
“Editing kickstarter file for second USB flash drive” on page 212.

Note: You can add another partition to the first USB stick and use this partition for the
kickstarter configuration. We want to keep the configuration simple; therefore, we use two
separate USB flash drives.
Chapter 5. Node and software deployment 211

Copying RHEL ISO to first USB flash drive
The following procedure assumes that you are using a Linux or a macOS system. Complete
the following steps:

1. Download the RHEL server 7.3 installation ISO from Red Hat.

2. Use the dd command to copy the ISO file to the first USB flash drive, as shown in the
following example:

$ dd if=/home/user/Downloads/RHEL-7.3-20161019.0-Server-ppc64le-dvd1.iso
of=/dev/<usb_device> bs=512k

Editing kickstarter file for second USB flash drive
Get the smn_md.cfg kickstarter file at the following website (for more information, see
Appendix B, “Additional material” on page 377).

Open the smn_md.cfg file by using an editor of your choice and edit the first parameters, such
as language, time zone, root password, and network for your environment, as shown in
Example 5-10.

Example 5-10 Edit section of smn_md.cfg kickstarter file

##########################
Kickstarter file for
IBM S812LC server
##########################

######################
Edit the following
######################

#System language
lang en_US

#System keyboard
keyboard us

#System timezone
timezone US/Eastern

#Root password. Default is cluster
rootpw --iscrypted 1tv1B/ROT$0SaZEF5R.mkdI29iZci2O0

#Network information
network --bootproto=static --ip=192.168.0.1 --netmask=255.255.255.0
--gateway=192.168.0.254 --nameserver=192.168.0.100,192.168.0.200 --device=enp1s0f2
network --hostname=xcat-mn.domain.com

####################################
Do not touch anything below this
####################################
<...>

Note: For more information about other operating systems, such as Windows, see the Red
Hat Making Installation USB Media website.
212 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-making-usb-media.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-making-usb-media.html

You also might have to change the network device name. For more information, see 5.4.1,
“RHEL server” on page 209.

Generate a root password hash by using the following command:

$ openssl passwd -1 <root_pw>

You also can use the preconfigured hash, which sets cluster as the root password.

Finally, copy the edited kickstarter file to the second FAT32 formatted USB flash drive. It is
recommended that you set the label of your USB drive to something informative, such as
“KICKSTART”.

Record the second USB flash drive UUID by using the following blkid command:

$ blkid
/dev/sdc2: SEC_TYPE="msdos" UUID="BAE0-6F47" TYPE="vfat"

Starting the installation
Complete the following steps to start the installation process:

1. Put both USB keys only in the blue USB ports.

2. Open your serial console window or reconnect to the console.

3. Restart the server by using the following ipmitool command:

$ ipmitool -I lanplus -H <bmc-ip> -U <username> -P <password> chassis power
cycle

4. Wait for the Petitboot Panel. Choose Install Red Hat Enterprise Linux 7.3 (64-bit kernel)
and press E to edit the boot arguments, as shown in the following example:

<...>
[USB: sdn / 2016-10-19-18-33-07-00]
 Rescue a Red Hat Enterprise Linux system (64-bit kernel)
 Test this media & install Red Hat Enterprise Linux 7.3 (64-bit kernel)
 * Install Red Hat Enterprise Linux 7.3 (64-bit kernel)
<...>

5. Change the boot arguments as shown in the following example:

ro inst.ks=hd:UUID=<UUID_KICKSTARTER>:/smn_md.cfg
inst.stage2=hd:UUID=<UUID_RHEL7_ISO>

Example 5-11 shows the full string for our example.

Example 5-11 Boot argument string

Device: (*) sdm [2016-10-19-18-33-07-00]
 () Specify paths/URLs manually

 Kernel: /ppc/ppc64/vmlinuz
 Initrd: /ppc/ppc64/initrd.img

Note: Select Rescan devices if USB device does not appear.

Note: <UUID_KICKSTARTER> is your second USB flash drive with kickstarter file that is
described in “Editing kickstarter file for second USB flash drive” on page 212.
<UUID_RHEL7_ISO> is your first USB flash drive with RHEL7 ISO on it. It is the string in
“[]” brackets after the device name in the edit menu that is shown in Example 5-11.
Chapter 5. Node and software deployment 213

 Device tree:
 Boot arguments: ro inst.ks=hd:UUID=BAE0-6F47:/smn_md.cfg
inst.stage2=hd:UUID=2016-10-19-18-33-07-00

6. Click OK. Then, press Enter, and Enter again to start the Installation.

The installation proceeds automatically. After the installation is finished, the system
reboots.

You must choose the correct boot target, starting with Disk in petitboot if you do not unplug
the USB flash drive during the reboot, as shown in the following example:

[Disk: md126 / 62c0a482-733c-4e74-ac7c-22ee6483ab3d]
 Red Hat Enterprise Linux Server (0-rescue-31154c160e114634900069a33764d7d8)
 * Red Hat Enterprise Linux Server (3.10.0-514.el7.ppc64le) 7.3 (Maipo)

7. After final disk boot, login by using SSH with your root credentials as configured in your
kickstarter file.

Configuring RHEL Server 7.3 package repository
To install more packages and satisfy package dependencies for xCAT, configure a yum
package repository for the RHEL Server 7.3 packages.

You can configure the system for the RHEL regular package update channels, or at least, the
RHEL Server 7.3 DVD 1 ISO. For simplicity, this chapter describes RHEL Server 7.3 DVD 1
ISO.

Complete the following steps to configure the package repository for RHEL Server 7.3 DVD 1:

1. Copy RHEL Server 7.3 ISO content from USB flash drive to server, as shown in the
following example:

$ mkdir /mnt/usb
$ mount -o ro /dev/disk/by-uuid/2016-10-19-18-33-07-00 /mnt/usb
$ cp -r /mnt/usb /mnt/rhel7.3-dvd1
$ chmod 500 /mnt/rhel7.3-dvd1
$ umount /mnt/usb

2. Configure repository:

a. Install the RPM GPG key, as shown in the following example:

$ rpm --import /mnt/rhel7.3-dvd1/RPM-GPG-KEY-redhat-release

b. Create the yum package repository file, as shown in the following example:

$ cat <<EOF >/etc/yum.repos.d/rhel7.3-dvd1.repo
[rhel-7.3-dvd1]
name=RHEL 7.3 Server DVD1
baseurl=file:///mnt/rhel7.3-dvd1
enabled=1
gpgcheck=1
EOF

You can verify that the package repository is configured correctly by using the following
command:

$ yum repolist
yum repolist
Loaded plugins: product-id, search-disabled-repos, subscription-manager
This system is not registered to Red Hat Subscription Management. You can use
subscription-manager to register.
214 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

repo id repo name
status
rhel-7.3-dvd1 RHEL 7.3 Server DVD1
3.454
repolist: 3.454

Front disk formatting
Consider the following points as you configure the front drives for data:

� /install for xCAT must be at least 500 GB because it consists of all your images and
software packages.

� Keep track of logs and databases.

� Use LVM for volume management to be flexible.

The front drives can be formatted by using one of the following methods:

� Use the specific built-in HW RAID controller. For more information, see the manufacturer’s
manual.

� Use LVM mirroring. For more information, see the Red Hat Creating Mirrored Volumes
documentation.

5.4.2 xCAT packages

The xCAT is a collection of packages that are available for download at the xCAT project page
of the xCAT website.

The xCAT packages are organized into the following package repositories:

� xCAT Core Packages: Packages with the xCAT.

This package repository is available in the following streams (or types):

– Release (or Stable) builds: The latest, officially released (general availability) version of
xCAT.

– Snapshot Builds: Unreleased changes for the next refresh of current version of xCAT.

– Development Builds: Unreleased changes for the next version of xCAT.

� xCAT Dependency Packages: Required packages that are not provided by the Linux
distribution.

xCAT is installed by using one of the following methods:

� Manually with online or offline RPM package repositories for RHEL, SUSE Linux
Enterprise Server (SLES), and Debian packages (for Ubuntu).

� xCAT version 2.12.1 added an installation tool called go-xcat. This tool simplifies the xCAT
installation and update procedure and configures all required repositories automatically.

This section describes performing the installation by using the new go-xcat tool. Complete
the following steps:

1. Download the go-xcat tool, as shown in the following example:

$ wget
https://raw.githubusercontent.com/xcat2/xcat-core/master/xCAT-server/share/xcat
/tools/go-xcat -O - >/tmp/go-xcat
$ chmod +x /tmp/go-xcat
Chapter 5. Node and software deployment 215

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Logical_Volume_Manager_Administration/LV.html#mirror_create
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Logical_Volume_Manager_Administration/LV.html#mirror_create
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Logical_Volume_Manager_Administration/LV.html#mirror_create
https://xcat.org/download.html

2. Run the tool without parameters to configure both xCAT repositories and install the latest
version of xCAT, as shown in the following example:

$ /tmp/go-xcat install
Operating system: linux
Architecture: ppc64le
Linux Distribution: rhel
Version: 7.3

Reading repositories done

xCAT is going to be installed.
Continue? [y/n] y
<... long yum output ...>
Complete!

xCAT has been installed!
========================

If this is the first time xCAT has been installed, run the following
commands to set environment variables into your PATH:

 for sh,
 `source /etc/profile.d/xcat.sh'
 or csh,
 `source /etc/profile.d/xcat.csh'

For an offline installation, you can specify the path to download xcat-core and xcat-dep
packages, as shown in the go-xcat help output in Example 5-12.

Example 5-12 go-xcat help output

$ /tmp/go-xcat -h
go-xcat version 1.0.10

Usage: go-xcat [OPTION]... [ACTION]
Install xCAT automatically

Options:
Mandatory arguments to long options are mandatory for short options too.
 -h, --help display this help and exit
 --xcat-core=[URL] use a different URL or path for the xcat-core
 repository
 --xcat-dep=[URL] use a different URL or path for the xcat-dep
 repository
 -x, --xcat-version=[VERSION] specify the version of xCAT; cannot use with
 --xcat-core
 -y, --yes answer yes for all questions

Actions:
 install installs all the latest versions of xcat-core
 and xcat-dep packages from the repository
 update updates installed xcat-core packages to the
 latest version from the repository

Note: You can specify a specific version of xCAT to install with -x <version>.
216 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Examples:
 go-xcat
 go-xcat install
 go-xcat update
 go-xcat --yes install
 go-xcat -x 2.12 -y install
 go-xcat --xcat-version=devel install
 go-xcat --xcat-core=/path/to/xcat-core.tar.bz2 \
 --xcat-dep=/path/to/xcat-dep.tar.bz2 install
 go-xcat --xcat-core=http://xcat.org/path/to/xcat-core.tar.bz2 \
 --xcat-dep=http://xcat.org/path/to/xcat-dep.tar.bz2 install

xCAT (Extreme Cloud/Cluster Administration Toolkit): <http://xcat.org/>
Full documentation at: <http://xcat-docs.readthedocs.io/en/stable/>

3. Verify that the package repositories are configured correctly, as shown in the following
example:

$ yum repolist
<...>
repo id repo name status
rhel-7.3-dvd1 RHEL 7.3 Server DVD1 3.454
xcat-core xCAT 2 Core packages 20
xcat-dep xCAT 2 depedencies 32
repolist: 3.506

4. Verify that the xCAT service is running, as shown in the following example:

$ systemctl status xcatd
xcatd.service - LSB: xcatd
 Loaded: loaded (/etc/rc.d/init.d/xcatd)
 Active: active (running) since Do 2016-11-17 15:02:35 EST; 15min ago
<...>

5. Verify the version information and node type, as shown in the following example:

$ source /etc/profile.d/xcat.sh
Version 2.12.4 (git commit 64ec2d41285d9a8770d8d9ef909f251ecbb5100b, built Thu
Nov 10 23:59:02 EST 2016)
This is a Management Node
dbengine=SQLite

5.4.3 Configuring more network interfaces

The xCAT requires a static IP network configuration for the Management Node. The site
network interface is configured during the kickstarter process. For all other networks follow
the instructions that are presented in this section.

Note: The source command for the xcat.sh file is required on current login shells only.

Note: This requirement applies to any xCAT networks with communication between the
Management Node and other nodes (for example, Management and Service Networks).
Chapter 5. Node and software deployment 217

You can configure an Ethernet network interface with static IP address in one of many ways.
This section describes the method that uses sysconfig or ifcfg files, and the nmcli
command (Network Manager Command Line Interface).

For more information, see the RHEL 7 Networking Guide at the Red Hat documentation
website.

This section uses content from the following sections of the RHEL 7 Networking Guide:

� Section 1.9: Network configuration by using sysconfig files
� Section 2.4.1: Configuring a network interface with ifcfg files

To configure a network interface with static IP address, complete the following steps for the
management (OS) network:

1. Create the /etc/sysconfig/network-scripts/ifcfg-<network-interface> file.

For the scenario that is described in this chapter, the file resembles the following example:

$ cat <<EOF >/etc/sysconfig/network-scripts/ifcfg-enp1s0f0
DEVICE=enp1s0f0
ONBOOT=yes
BOOTPROTO=none
IPADDR=10.1.0.1
PREFIX=16
IPV6INIT=yes
EOF

2. Verify that the network configuration is not in effect immediately (no IPv4 or IPv6 address):

$ ip addr show enp1s0f0
4: enp1s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP qlen
1000
 link/ether 98:be:94:59:fa:26 brd ff:ff:ff:ff:ff:ff

3. Reload the network configuration for that network interface by using the nmcli command.

The network configuration is loaded automatically on system boot:

$ nmcli connection load /etc/sysconfig/network-scripts/ifcfg-enp1s0f0

4. Verify that the network configuration is in effect (including an IPv6 link-local address):

$ ip addr show enp1s0f0
4: enp1s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP qlen
1000
 link/ether 98:be:94:59:fa:26 brd ff:ff:ff:ff:ff:ff
 inet 10.1.0.1/16 brd 10.1.255.255 scope global enp1s0f0
 valid_lft forever preferred_lft forever
 inet6 fe80::9abe:94ff:fe59:fa26/64 scope link
 valid_lft forever preferred_lft forever

For the service (BMC) network, as described in 5.3.11, “xCAT scenario” on page 207, a
physically separate service network must be available.

Perform these steps for the service network as well. In our case, this network is connected to
the 1 Gigabit Ethernet port enp1s0f3 and uses the 10.2.0.0/16 network.
218 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/index.html

5.4.4 Host name and aliases

Although the kickstarter file configured the host name, you must verify that everything is set
up correctly.

Verify the short and long (fully qualified domain name) host names are detected:

$ hostname --short
xcat-mn

$ hostname --long
xcat-mn.xcat-cluster

Configure the host name to be resolved to the IP address in the management (OS) network
by completing the following steps:

1. Add the host aliases in the /etc/hosts file:

$ echo "10.1.0.1 $(hostname -s) $(hostname -f)" >> /etc/hosts
$ cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
10.1.0.1 xcat-mn xcat-mn.xcat-cluster

2. Verify that the short host name resolves to the long host name, and that the ping test
works:

$ ping -c1 xcat-mn
PING xcat-mn.xcat-cluster (10.1.0.1) 56(84) bytes of data.
64 bytes from xcat-mn.xcat-cluster (10.1.0.1): icmp_seq=1 ttl=64 time=0.025 ms

--- xcat-mn.xcat-cluster ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.025/0.025/0.025/0.000 ms

5.4.5 xCAT networks

The xCAT networks configuration is stored the networks table, and is available as objects of
the network type.

The use of the makenetworks command populates the networks table based on the current
configuration of the network interfaces. It is run automatically during the installation of xCAT
packages.

You can use the following commands to create, list, modify, and remove, network objects, and
list, and edit, the networks table:

� mkdef -t network
� lsdef -t network
� chdef -t network
� rmdef -t network
� tabdump networks
� tabedit networks

To configure the xCAT networks, populate the networks table by using the makenetworks
command, remove any non-xCAT networks, rename the xCAT networks (optional), and create
any other xCAT networks.
Chapter 5. Node and software deployment 219

For our scenario, complete the following steps:

1. Populate the networks table by using the makenetworks command:

$ makenetworks

$ lsdef -t network
10_1_0_0-255_255_0_0 (network)
10_2_0_0-255_255_0_0 (network)
9_x_x_x-255_255_255_0 (network)
fd55:xxxx:xxxx:33e::/64 (network)

2. Remove any non-xCAT networks:

$ rmdef -t network 9_x_x_x-255_255_255_0
1 object definitions have been removed.

$ rmdef -t network fd55:xxxx:xxxx:33e::/64
1 object definitions have been removed.

$ lsdef -t network
10_1_0_0-255_255_0_0 (network)
10_2_0_0-255_255_0_0 (network)

3. (Optional) Rename the xCAT networks:

$ chdef -t network 10_1_0_0-255_255_0_0 -n net-mgmt
Changed the object name from 10_1_0_0-255_255_0_0 to net-mgmt.

$ chdef -t network 10_2_0_0-255_255_0_0 -n net-svc
Changed the object name from 10_1_0_0-255_255_0_0 to net-mgmt.

$ lsdef -t network
net-mgmt (network)
net-svc (network)

4. Create any other xCAT networks:

$ mkdef -t network net-app-ib net=10.10.0.0 mask=255.255.0.0
1 object definitions have been created or modified.

$ lsdef -t network
net-app-ib (network)
net-mgmt (network)
net-svc (network)

Note: The Application Networks lack the mgtifname attribute (management interface
name) because the Management Node is not connected to them; that is, only some
other nodes are, such as the Compute Nodes, and Login Nodes.

However, Application Networks must be defined in the Management Node for it to
perform their network configuration on other nodes (by way of the Management
Network).
220 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

5. Verify the xCAT networks configuration.

You can use the lsdef command to list the configuration of a specific xCAT network or
networks. The following example lists the Management Network and Application Network
for InfiniBand port 1:

$ lsdef -t network net-mgmt,net-app-ib
Object name: net-mgmt
 gateway=<xcatmaster>
 mask=255.255.0.0
 mgtifname=enp1s0f0
 net=10.1.0.0
 tftpserver=10.1.0.1
Object name: net-app-ib
 mask=255.255.0.0
 net=10.10.0.0

You can use the tabdump command to list the configuration of all xCAT networks:

$ tabdump networks
#netname,net,mask,mgtifname,<...>
"net-mgmt","10.1.0.0","255.255.0.0","enp1s0f0",<...>
"net-svc","10.2.0.0","255.255.0.0","enp1s0f3",<...>
"net-app-ib","10.10.0.0","255.255.0.0",,,,,,,,,,,,,,,,

5.4.6 DNS server

The xCAT configures the DNS server based on attributes of the site table, the /etc/hosts
file, and node definitions. The makedns command applies the configuration.

The following attributes of the site table are used to configure the DNS server:

� dnsinterfaces: Host name (optional) and network interfaces for the DNS server to listen
on.

� domain: DNS domain name for the cluster.

� forwarders: DNS servers for resolving non-cluster names, that is, the site’s or external
DNS servers.

� master: IP address of the xCAT management node on the management (OS) network, as
known by the nodes.

� nameservers: DNS servers that are used by the compute nodes (usually, the IP address of
the management node). The value <xcatmaster> indicates that the management node or
service node that is managing a node (automatically defined to the correct IP address in
the respective xCAT network) is more portable.

For more information, see the manual page of the site table by using the following command:

$ man 5 site

The use of the makedns command generates the following configuration files for the DNS
server, and reloads it:

� /etc/named.conf: Main configuration file (generated by makedns -n).
� /var/named/*: Zone files for network names and addresses (generated by makedns -n)
Chapter 5. Node and software deployment 221

To configure the DNS server, complete the following steps:

1. Check the following basic configuration parameters in your site table:

$ lsdef -t site -i dnsinterfaces,domain,forwarders,master,nameservers
Object name: clustersite
 domain=xcal-cluster
 forwarders=9.x.x.x,9.x.x.x
 master=10.1.0.1
 nameservers=10.1.0.1

2. The dnsinterfaces attribute of the site table is not configured yet. Set the attribute by
using the following chdef command:

$ chdef -t site dnsinterfaces='xcat-mn|enp1s0f0'
1 object definitions have been created or modified.

3. Generate new configuration files for the DNS server by using the makedns -n command.

The DNS server is automatically started or restarted, as shown in the following example:

$ makedns -n
Handling xcat-mn.xcat-cluster in /etc/hosts.
Handling localhost in /etc/hosts.
Handling localhost in /etc/hosts.
Getting reverse zones, this take several minutes for a large cluster.
Completed getting reverse zones.
Updating zones.
Completed updating zones.
Restarting named
Restarting named complete
Updating DNS records, this take several minutes for a large cluster.
Completed updating DNS records.

4. Verify that the DNS server is resolving internal and external names with the host
command by completing the following steps:

a. Install the bind-utils package (not installed with the minimal installation package set):

$ yum install bind-utils

b. Verify the name resolution of internal names. For example, the Management Node
(that is, its short and long host names are associated, and are resolved to its IP
address in the Management Network):

$ host xcat-mn 10.1.0.1
Using domain server:
Name: 10.1.0.1
Address: 10.1.0.1#53
Aliases:

Note: To get a detailed description for each parameter, run the tabdump -d site
command.

Note: It is important that no errors are reported in the output of the makedns command.
The proper functioning of the DNS server is essential to several features in the xCAT
(for example, node discovery).

If any errors are reported, check the messages, the contents of the /etc/hosts file, and
any node definitions (by using the lsdef command) for errors or inconsistencies.
222 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

xcat-mn.xcat-cluster has address 10.1.0.1

c. Verify the name resolution of external names:

$ host example.com 10.1.0.1
Using domain server:
Name: 10.1.0.1
Address: 10.1.0.1#53
Aliases:

example.com has address 93.184.216.34
example.com has IPv6 address 2606:2800:220:1:248:1893:25c8:1946

5.4.7 DHCP server

The xCAT configures the DHCP server based on attributes of the site and networks tables,
and the node definitions (for reservation of IP address leases based on MAC address). The
makedhcp command applies the configuration.

The following attributes of the site and networks tables are used to configure the DHCP
server:

� dhcpinterfaces (site table)

Host name (optional) and network interfaces on which the DHCP server listens.

� dynamicrange (networks table)

Range of IP addresses that are temporarily assigned during the node discovery process,
which are required in the xCAT management and service networks.

The use of the makedhcp command generates the following configuration files for the DHCP
server, and reloads it:

� /etc/dhcp/dhcpd.conf: Main configuration file (generated by makedhcp -n)
� /var/lib/dhcpd/dhcpd.leases: IP address leases (generated by makedhcp -a)

Because we use two physically separate networks for OS and BMC, we must add the :noboot
tag to the service (BMC) network in dhcpinterfaces. This tag prevents the distribution of the
genesis image in this network. For more information, see 5.3.11, “xCAT scenario” on
page 207. In this example enp1s0f0 is connected to the dedicated management (OS) network
and enp1s0f3 is connected to the dedicated service (BMC) network.

To configure of the DHCP server, complete the following steps:

1. Set the dhcpinterfaces attribute of the site table by using the chdef command (note the
:nooboot flag), as shown in the following example for the scenario in this chapter:

$ chdef -t site dhcpinterfaces='xcat-mn|enp1s0f0,xcat-mn|enp1s0f3:noboot'
1 object definitions have been created or modified.

You can verify the attributes by using the lsdef command, as shown in the following
example:

$ lsdef -t site -i dhcpinterfaces
Object name: clustersite
 dhcpinterfaces=xcat-mn|enp1s0f0,xcat-mn|enp1s0f3:noboot
Chapter 5. Node and software deployment 223

2. Remove the genesis configuration file from the :noboot tagged network with by using the
mknb command:

$ mknb ppc64
Creating genesis.fs.ppc64.gz in /tftpboot/xcat

3. Generate the configuration file for the DHCP server by using the makedhcp -n command.
The DHCP server is automatically started or restarted, as shown in the following example:

$ makedhcp -n
Renamed existing dhcp configuration file to /etc/dhcp/dhcpd.conf.xcatbak

The dhcp server must be restarted for OMAPI function to work
Warning: No dynamic range specified for 10.1.0.0. If hardware discovery is
being used, a dynamic range is required.
Warning: No dynamic range specified for 10.2.0.0. If hardware discovery is
being used, a dynamic range is required.

Despite the message that is related to the need to restart the DHCP server, it is
automatically restarted, as shown in the /var/log/messages file:

$ tail /var/log/messages
<...>
<...> xcat[...]: xCAT: Allowing makedhcp -n for root from localhost
<...> systemd: Starting DHCPv4 Server Daemon...
<...> dhcpd: Internet Systems Consortium DHCP Server 4.2.5
<...>

4. Generate the leases file for the DHCP server by using the makedhcp -a command. This
step is only required if any node definitions exist (they do not yet exist in the scenario in
this chapter):

$ makedhcp -a

5.4.8 IPMI authentication credentials

The xCAT configures the authentication credentials for IPMI commands (for example, power
management, console sessions, BMC discovery, and network configuration) based on
attributes from (in this order) node definitions, node groups definitions, and the passwd table.

To configure IPMI authentication credentials on individual nodes or on node groups, set the
bmcusername and bmcpassword attributes on the node or node group object with the chdef
command:

$ chdef <node or group> bmcusername=<IPMI username> bmcpassword=<IPMI password>

Note: The mknb (make network boot) command generates the network boot
configuration file (specified in the /etc/dhcp/dhcpd.conf file) and genesis image files. It
is run automatically when the xCAT packages are installed.

Note: At the time of writing, a bug exists in xCAT 2.12.4. The mknb command fails if
dhcpinterfaces contains a nodegroup definition with “|”.

A fix for this bug was opened and merged. For more information, see the Fix mknb:
Undefined subroutine noderange page.

xCAT 2.13 has this fix included.
224 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

https://github.com/xcat2/xcat-core/pull/2172
https://github.com/xcat2/xcat-core/pull/2172
https://github.com/xcat2/xcat-core/pull/2172
https://github.com/xcat2/xcat-core/pull/2172

If the IPMI authentication credentials are common across some or all of the systems’ BMCs,
you can set the common credentials in the passwd table. Any different credentials can be set
in the respective node or node group objects.

For more information, see the Configure passwords page of the xCAT documentation
website.

To configure the IPMI authentication credentials, complete the following steps:

1. Set the username and password attributes of the ipmi key/row in the passwd table by using
the chtab or tabedit commands, as shown in the following example for the scenario in this
chapter:

$ chtab key=ipmi passwd.username=ADMIN passwd.password=admin

2. Verify the setting by using the tabdump command:

$ tabdump -w key==ipmi passwd
#key,username,password,cryptmethod,authdomain,comments,disable
"ipmi","ADMIN","admin",,,,

You can use the tabdump command without filter arguments to list the configuration of all
entries in the passwd table:

$ tabdump passwd
#key,username,password,cryptmethod,authdomain,comments,disable
"omapi","xcat_key","<...>=",,,,
"ipmi","ADMIN","admin",,,,

5.5 xCAT node discovery

This section describes the xCAT node discovery (or hardware discovery) process. It covers
the configuration steps that are required in the Management Node, and instructions for
performing the discovery of nodes in the cluster. For more information, see 5.3.4, “xCAT node
discovery” on page 204.

The xCAT provides the following methods for node discovery:

� Manual definition

This method includes manual hardware information collection and node object definition.
This example includes required node-specific and xCAT/platform-generic attributes:

$ mkdef node1 \
groups=all,s822lc \
ip=10.1.1.1 mac=6c:ae:8b:6a:d4:e installnic=mac primarynic=mac \
bmc=10.2.1.1 bmcusername=ADMIN bmcpassword=admin \
mgt=ipmi cons=ipmi netboot=petitboot

� Machine Type and Model, and Serial Number (MTMS)-based discovery

This process automatically collects MTM and S/N information from the node’s BMC and
OS (genesis), and matches it with a minimal manually defined node object (with mtm and
serial attributes). This process automatically stores the hardware information in the
matched node object.

Note: If the IPMI authentication credentials are not set or invalid, some IPMI-based
commands can show errors, as shown in the following example:

$ rpower node status
node: Error: Unauthorized name
Chapter 5. Node and software deployment 225

https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/ppc64le/configure/password.html
https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/ppc64le/configure/password.html

� Sequential discovery

This method automatically stores hardware information in a list of minimal node objects
(with no attributes) in a sequential manner, in the order that the nodes are booted.

� Switch-based discovery

Automatically identifies the network switch and port for the node (with the SNPMv3
protocol), and matches it with a minimal manually defined node object (with switch and
switchport attributes). This process automatically stores the hardware information in the
matched node object.

This section describes the MTMS-based discovery method.

5.5.1 Verification of network boot configuration and genesis image files

The xCAT node discovery requires the node to boot the genesis image from the network. (For
more information, see 5.3.4, “xCAT node discovery” on page 204.) It is important to verify that
the files for network boot configuration and genesis image are correctly in place.

To verify and generate the files for network boot configuration and genesis image, complete
the following steps:

1. Verify the location of the platform-specific network boot configuration file in the
/etc/dhcp/dhcpd.conf file.

The scenario adopted in this chapter uses OPAL firmware:

$ grep -A1 OPAL /etc/dhcp/dhcpd.conf
} else if option client-architecture = 00:0e { #OPAL-v3

option conf-file = "http://10.1.0.1/tftpboot/pxelinux.cfg/p/10.1.0.0_16";

2. Verify that the file exists:

$ ls /tftpboot/pxelinux.cfg/p/10.1.0.0_16
/tftpboot/pxelinux.cfg/p/10.1.0.0_16

3. Verify the content of the file. It must contain pointers to the platform-specific Genesis
image files:

$ cat /tftpboot/pxelinux.cfg/p/10.1.0.0_16
default "xCAT Genesis (10.1.0.1)"
 label "xCAT Genesis (10.1.0.1)"
 kernel http://10.1.0.1:80//tftpboot/xcat/genesis.kernel.ppc64
 initrd http://10.1.0.1:80//tftpboot/xcat/genesis.fs.ppc64.gz
 append "quiet xcatd=10.1.0.1:3001 "

4. Verify that the files of the Genesis image exist:

$ ls -lh /tftpboot/xcat/genesis.{kernel,fs}.ppc64*
-rw-r--r-- 1 root root 48M 8. Dez 20:36 /tftpboot/xcat/genesis.fs.ppc64.gz
-rwxr-xr-x 1 root root 23M 25. Okt 09:31 /tftpboot/xcat/genesis.kernel.ppc64

Note: The network boot configuration and genesis image files are required only for the
xCAT Management Network.

Note: The specified file might not exist in some cases, such as when the mknb
command is not run after a change in the xCAT networks configuration. If this issue
occurs, run mknb ppc64 again.
226 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

5.5.2 Configuring the DHCP dynamic range

The xCAT node discovery requires temporary IP addresses for nodes and BMCs until the
association with the respective node objects and permanent network configuration occur. The
IP address range that is reserved for that purpose is known as dynamic range, which is an
attribute of network objects and is reflected in the configuration file of the DHCP server.

You must provide temporary IP addresses for the Management and Service Networks to
handle the in-band network interface (used by the Petitboot bootloader and Genesis image)
and out-of-band network interface (used by the BMC).

Depending on your network environment and configuration, the Management Node can use
different or shared network interfaces for the Management and Service Networks. This
consideration is important because the dynamic range is defined per network interface in the
configuration file of the DHCP server. As described in 5.3.11, “xCAT scenario” on page 207,
the following networks are recommended:

� For different network interfaces, set the dynamicrange attribute on the Management and
Service Networks.

� For shared network interface, set the dynamicrange attribute in either one of the
Management or Service Networks.

To set the dynamic range, complete the following steps:

1. Set the dynamicrange attribute for the Management Network by using the chdef command,
as shown in the following example for the scenario in this chapter:

$ chdef -t network net-mgmt dynamicrange=10.1.254.1-10.1.254.254
1 object definitions have been created or modified.

You can verify it by using the lsdef command:

$ lsdef -t network net-mgmt -i dynamicrange
Object name: net-mgmt
 dynamicrange=10.1.254.1-10.1.254.254

2. Set the dynamicrange attribute for the Service Network by using the chdef command (only
required for different network interfaces), as shown in the following example for the
scenario in this chapter:

$ chdef -t network net-svc dynamicrange=10.2.254.1-10.2.254.254
1 object definitions have been created or modified.

You can verify it by using the lsdef command:

$ lsdef -t network net-svc -i dynamicrange
Object name: net-svc
 dynamicrange=10.2.254.1-10.2.254.254

3. Generate the configuration file for the DHCP server by using the makedhcp -n command.

$ makedhcp -n
Renamed existing dhcp configuration file to /etc/dhcp/dhcpd.conf.xcatbak

Tip: To increase the verbosity of the node discovery in the nodes (which is useful for
educational and debugging purposes), remove the quiet argument from the append line
in the network boot configuration file by using the following command:

$ sed 's/quiet//' -i /tftpboot/pxelinux.cfg/p/10.1.0.0_16
Chapter 5. Node and software deployment 227

4. Verify the dynamic range in the configuration of the DHCP server:

$ grep 'network\|subnet\|_end\|range' /etc/dhcp/dhcpd.conf

5.5.3 Configuring BMCs to DHCP mode

The xCAT node discovery requires the BMCs’ network configuration to occur in DHCP mode
(until the association with the respective node objects and permanent network configuration
occur).

To set the network configuration of the BMCs to DHCP mode, complete the following tasks:

� For BMCs that are in DHCP mode, no action required.

� For BMCs with Static (IP) Address mode and known IP address:

a. Set the IP Address Source attribute to DHCP by using the ipmitool command.

Notice that the IP Address Source attribute is set to Static Address:

$ ipmitool -I lanplus -H <ip> -U <user> -P <password> lan print 1
<...>
IP Address Source : Static Address
IP Address : 192.168.101.29
Subnet Mask : 255.255.255.0
MAC Address : 70:e2:84:14:02:54
<...>

Set it to DHCP:

$ ipmitool -I lanplus -H <ip> -U <user> -P <password> lan set 1 ipsrc dhcp

Notice that the network configuration changes do not take effect immediately:

$ ipmitool -I lanplus -H <ip> -U <user> -P <password> lan print 1
<...>
IP Address Source : DHCP Address
IP Address : 192.168.101.29
Subnet Mask : 255.255.255.0
MAC Address : 70:e2:84:14:02:54
<...>

b. Reboot the BMC by using the ipmitool command, which is required for the network
configuration changes to take effect:

$ ipmitool -I lanplus -H <ip> -U <user> -P <password> mc reset cold

c. Wait for the BMC to perform initialization and network configuration.

To determine when the BMC is back online and acquired an IP address through DHCP,
you can watch the /var/log/messages file for DHCP server log messages, as shown in
the following example:

$ tail -f /var/log/messages
<...>
<...> dhcpd: DHCPDISCOVER from 70:e2:84:14:02:54 via enp1s0f3

Note: If the BMCs’ network configuration cannot be changed (for example, because of
network restrictions or maintenance requirements), skip the required steps for the BMC
network configuration in the node discovery process. For more information, see 5.5.3,
“Configuring BMCs to DHCP mode” on page 228, and 5.5.4, “Definition of temporary BMC
objects” on page 230. Then, manually set the bmc attribute of one or more nodes to the
respective BMC IP address.
228 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

<...> dhcpd: DHCPOFFER on 10.2.254.1 to 70:e2:84:14:02:54 via enp1s0f3
<...> dhcpd: DHCPREQUEST for 10.2.254.1 (10.1.0.1) from 70:e2:84:14:02:54
via enp1s0f3
<...> dhcpd: DHCPACK on 10.2.254.1 to 70:e2:84:14:02:54 via enp1s0f3
<...>

It is also possible to determine when the BMC is back online with an approach that is
based on its IPv6 link-local address, which does not change across power cycles,
network configuration steps, and so on (see Example 5-13). To identify the IPv6
link-local address of each BMC in a local network, see the next bullet, “For BMCs with
unknown IP address”.

Example 5-13 Waiting for the BMC with the ping6 command and IPv6 link-local address

$ while ! ping6 -c 1 <IPv6-link-local-address>%<network-interface>; do echo
Waiting; done; echo Finished
PING fe80::72e2:84ff:fe14:254%enp1s0f3(fe80::72e2:84ff:fe14:254) ...
<...>
Waiting
PING fe80::72e2:84ff:fe14:254%enp1s0f3(fe80::72e2:84ff:fe14:254)...
<...>
Waiting
<...>
PING fe80::72e2:84ff:fe14:254%enp1s0f3(fe80::72e2:84ff:fe14:254) ...
64 bytes from fe80::72e2:84ff:fe14:254: icmp_seq=1 ttl=64 time=0.669 ms
<...>
Finished

d. Verify that the network configuration changes are in effect by using the ipmitool
command:

$ ipmitool -I lanplus -H <ip> -U <user> -P <password> lan print 1
<...>
IP Address Source : DHCP Address
IP Address : 10.2.254.1
Subnet Mask : 255.255.0.0
MAC Address : 70:e2:84:14:02:54
<...>

� For BMCs with unknown IP address (in DHCP or Static Address mode):

a. Install the nmap package:

$ yum install nmap

b. Discover one or more IPv6 link-local addresses of one or more BMCs by using the nmap
command (see Example 5-14).

Example 5-14 Discovering the IPv6 link-local address of BMCs with the nmap command

$ nmap -6 --script=targets-ipv6-multicast-echo -e enp1s0f3

Starting Nmap 6.40 (http://nmap.org) at <...>
Pre-scan script results:
| targets-ipv6-multicast-echo:
| IP: fe80::9abe:94ff:fe59:f0f2 MAC: 98:be:94:59:f0:f2 IFACE: enp1s0f3
| IP: fe80::280:e5ff:fe1b:fc99 MAC: 00:80:e5:1b:fc:99 IFACE: enp1s0f3
| IP: fe80::280:e5ff:fe1c:9c3 MAC: 00:80:e5:1c:09:c3 IFACE: enp1s0f3
| IP: fe80::72e2:84ff:fe14:259 MAC: 70:e2:84:14:02:59 IFACE: enp1s0f3
| IP: fe80::72e2:84ff:fe14:254 MAC: 70:e2:84:14:02:54 IFACE: enp1s0f3
Chapter 5. Node and software deployment 229

|_ Use --script-args=newtargets to add the results as targets
WARNING: No targets were specified, so 0 hosts scanned.
Nmap done: 0 IP addresses (0 hosts up) scanned in 2.37 seconds

c. Perform the steps that are described in the “Static (IP) Address mode and known IP
address” case. Replace the BMC’s IPv4 address in the ipmitool command for the IPv6
link-local address with the network interface as zone index, which is separated by the
percent (%) symbol, as shown in the following example, (see Example 5-13 on
page 229):

<IPv6-link-local-address>%<network-interface>

5.5.4 Definition of temporary BMC objects

The xCAT node discovery requires temporary node objects for BMCs until the association
with the respective node objects and permanent network configuration occurs.

The temporary BMC objects are created by using the bmcdiscover command, which scans an
IP address range for BMCs and collects information, such as machine type and model, serial
number, and IP address. It can provide that information as objects in the xCAT database or
the respective stanzas (a text-based description format with object name, type, and
attributes). The objects are named after their MTM and S/N information (which are obtained
through IPMI).

The temporary BMC objects are automatically removed during the node discovery process
after the respective node objects are matched and ready to refer to the BMCs. It is a simple
means to have xCAT objects to refer to the BMCs still using temporary IP addresses (not yet
associated with the respective node objects). This configuration allows for running xCAT
commands (for example, power management, and console sessions) before the network
configuration of the BMC occurs.

The bmcdiscover command has the following requirements:

� The BMCs’ IP addresses to be within a known range (satisfied with the dynamic range
configuration, as described in 5.5.2, “Configuring the DHCP dynamic range” on page 227,
and BMCs in DHCP mode, as described in 5.5.3, “Configuring BMCs to DHCP mode” on
page 228).

� The IPMI authentication credentials to be defined in the passwd table (satisfied in 5.4.8,
“IPMI authentication credentials” on page 224) or by using command arguments.

The bmcdiscover command can be used with the following arguments:

� -z: Provides object definition stanza.
� -t: Provides object with attributes for BMC node type and hardware type.
� -w: Writes objects to the xCAT database.

To define temporary objects for the BMCs, complete the following steps:

1. Run the bmcdiscover command on the dynamic range of IP addresses:

$ bmcdiscover --range 10.2.254.1-254 -t -w
node-8335-gtb-0000000000000000:
 objtype=node
 groups=all
 bmc=10.2.254.1
 cons=ipmi
 mgt=ipmi
 mtm=8335-GTB
230 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

 serial=0000000000000000
 nodetype=mp
 hwtype=bmc

2. Verify that the BMC objects are listed as node objects by using the lsdef command.

Note the attributes/values nodetype=mp and hwtype=bmc:

$ lsdef
node-8335-gtb-0000000000000000 (node)

$ lsdef node-8335-gtb-0000000000000000
Object name: node-8335-gtb-0000000000000000
 bmc=10.2.254.1
 cons=ipmi
 groups=all
 hwtype=bmc
 mgt=ipmi
 mtm=8335-GTB
 nodetype=mp
 postbootscripts=otherpkgs
 postscripts=syslog,remoteshell,syncfiles
 serial=0000000000000000

When BMC objects and IPMI authentication credentials are defined, you can run xCAT
commands on the BMC objects, as shown in the following examples:

� rpower for power management
� rcons for console sessions (requires the makeconservercf command first)
� rsetboot for boot-method selection

5.5.5 Defining node objects

The xCAT node discovery requires minimal node objects that can match the MTMS
information, which can be collected either automatically by the Genesis image (by using the
mtm and serial attributes) or manually. For more information, see 5.2.1, “Frequently used
commands with the IPMItool” on page 194.

The node discovery also attempts to match the information with the temporary BMC objects
to associate the node objects with their respective BMCs and perform the network
configuration of the BMCs.

This section describes creating a node group to set the attributes that are common among
nodes or based on regular expressions. For more information about xCAT regular
expressions, see Groups and Regular Expressions in Tables: Using Regular Expressions in
the xCAT Tables at the xCAT documentation website.

Note: The serial number is set to zeros in the early system revision that is used for this
book. This information is present on other systems (for example, from normal customer
orders).

Note: It is always possible to run ipmitool commands to the BMC IP address as well.
Chapter 5. Node and software deployment 231

https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/basic_concepts/xcat_db/regexp_db.html
https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/basic_concepts/xcat_db/regexp_db.html

To define a node group, complete the following steps:

1. Create the s822lc node group by using the mkdef command:

$ mkdef -t group s822lc \
ip='|p8r(\d+)n(\d+)|10.1.($1+0).($2+0)|' \
bmc='|p8r(\d+)n(\d+)|10.2.($1+0).($2+0)|' \
mgt=ipmi \
cons=ipmi

Warning: Cannot determine a member list for group 's822lc'.
1 object definitions have been created or modified.

2. Verify the node group by using the lsdef command:

$ lsdef -t group s822lc
Object name: s822lc
 bmc=|p8r(\d+)n(\d+)|10.2.($1+0).($2+0)|
 cons=ipmi
 grouptype=static
 ip=|p8r(\d+)n(\d+)|10.1.($1+0).($2+0)|
 members=
 mgt=ipmi

To create a node that is part of the node group, complete the following steps:

1. Create a node by using the mkdef command, and include the node group in the groups
attribute. You can also modify a node and make it part of a group by using the chdef
command:

$ mkdef p8r1n1 groups=all,s822lc
1 object definitions have been created or modified.

To create many nodes at the same time, you can use a node range, as shown in the
following example:

$ mkdef p8r[1-5]n[1-6] groups=all,s822lc
30 object definitions have been created or modified.

2. Verify that the node inherits the node group’s attributes by using the lsdef command.
Notice that the attributes that are based on regular expressions are evaluated according to
the name of the node. Some other attributes are set by xCAT by default:

$ lsdef p8r1n1
Object name: p8r1n1
 bmc=10.2.1.1
 cons=ipmi
 groups=all,s822lc
 ip=10.1.1.1
 mgt=ipmi
 postbootscripts=otherpkgs
 postscripts=syslog,remoteshell,syncfiles

To set the mtm and serial attributes to match the BMC object, complete the following steps:

1. Set the attributes by using the chdef command. You can also set the attributes when
creating the node object by using the mkdef command:

$ chdef p8r1n1 mtm=8335-GTB serial=0000000000000000
1 object definitions have been created or modified.

Note: The mtm and serial attributes are case-sensitive.
232 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

2. Verify the attributes by using the lsdef command:

$ lsdef p8r1n1
Object name: p8r1n1
 bmc=10.2.1.1
 cons=ipmi
 groups=all,s822lc
 ip=10.1.1.1
 mgt=ipmig
 mtm=8335-GTB
 postbootscripts=otherpkgs
 postscripts=syslog,remoteshell,syncfiles
 serial=0000000000000000

3. Enable the bmcsetup script for all nodes in the s822lc group to set the BMC IP to static on
first boot:

$ chdef -t group s822lc chain="runcmd=bmcsetup"

5.5.6 Configuring host table, DNS, and DHCP servers

The xCAT requires the node objects to be present and up-to-date in configuration files for the
host table, DNS server, and DHCP server.

The configuration files must be updated after the following changes are made, which are
reflected in the configuration files:

� Adding or removing node objects
� Adding, modifying, or removing host names, IP addresses, or aliases for network

interfaces

The order of the commands is relevant, as some commands depend on changes that are
performed by other commands. For more information, see the manual pages of the
makehosts, makedns, and makedhcp commands:

$ man makehosts
$ man makedns
$ man makedhcp

To update the configuration files with the node objects, complete the following steps:

1. Update the host table by using the makehosts command.

$ makehosts s822lc

2. Verify that the node objects are present on the host table:

$ cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
10.1.0.1 xcat-mn.xcat-cluster xcat-mn
10.1.1.1 p8r1n1 p8r1n1.xcat-cluster

3. Update the DNS server configuration by using the makedns command:

$ makedns -n s822lc
Handling p8r1n1 in /etc/hosts.
Getting reverse zones, this take several minutes for a large cluster.

Note: This step is important for the node discovery process, which otherwise can show
errors that are difficult to trace to specific misconfiguration steps.
Chapter 5. Node and software deployment 233

Completed getting reverse zones.
Updating zones.
Completed updating zones.
Restarting named
Restarting named complete
Updating DNS records, this take several minutes for a large cluster.
Completed updating DNS records.

4. Verify that the DNS server can resolve the name of the node by using the host command:

$ host p8r1n1 10.1.0.1
Using domain server:
Name: 10.1.0.1
Address: 10.1.0.1#53
Aliases:

p8r1n1.xcat-cluster has address 10.1.1.1

5. Update the DHCP server’s configuration file by using the makedhcp command:

$ makedhcp -n

6. Update the DHCP server’s leases file by using the makedhcp command:

$ makedhcp -a

5.5.7 Booting into Node discovery

Finally, you can boot the nodes into node discovery with power on (or cycle) if the boot order
configuration is correct. For more information, see 5.2.2, “Boot order configuration” on
page 196.

You can watch the progress of the node discovery process in the /var/log/messages file,
which is described with comments in Example 5-15.

Example 5-15 Contents and comments for the /var/log/messages file during node discovery

$ tail -f /var/log/messages
...

Petitboot (DHCP client acquires an IP address, and releases it before booting):

... dhcpd: DHCPDISCOVER from 98:be:94:59:f0:f2 via enp1s0f0

... dhcpd: DHCPOFFER on 10.1.254.4 to 98:be:94:59:f0:f2 via enp1s0f0

... dhcpd: DHCPREQUEST for 10.1.254.4 (10.1.0.1) from 98:be:94:59:f0:f2 via
enp1s0f0
... dhcpd: DHCPACK on 10.1.254.4 to 98:be:94:59:f0:f2 via enp1s0f0
... dhcpd: DHCPRELEASE of 10.1.254.4 from 98:be:94:59:f0:f2 via enp1s0f0 (found)

Genesis (DHCP client acquires an IP address):

... dhcpd: DHCPDISCOVER from 98:be:94:59:f0:f2 via enp1s0f0

... dhcpd: DHCPOFFER on 10.1.254.5 to 98:be:94:59:f0:f2 via enp1s0f0

... dhcpd: DHCPREQUEST for 10.1.254.5 (10.1.0.1) from 98:be:94:59:f0:f2 via
enp1s0f0
... dhcpd: DHCPACK on 10.1.254.5 to 98:be:94:59:f0:f2 via enp1s0f0

Genesis (Communication with the xCAT Management Node; some error messages and
duplicated steps are apparently OK):
234 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

... xcat[30280]: xCAT: Allowing getcredentials x509cert

... xcat[17646]: xcatd: Processing discovery request from 10.1.254.5

... xcat[17646]: Discovery Error: Could not find any node.

... xcat[17646]: Discovery Error: Could not find any node.

... xcat[17646]: xcatd: Processing discovery request from 10.1.254.5

Genesis (The respective BMC object is identified, used for configuring the BMC
according to the node object, and then removed):

... xcat[17646]: Discovery info: configure password for
pbmc_node:node-8335-gtb-0000000000000000.
... xcat[39159]: xCAT: Allowing rspconfig to node-8335-gtb-0000000000000000
password= for root from localhost
... xcat[39168]: xCAT: Allowing chdef node-8335-gtb-0000000000000000 bmcusername=
bmcpassword= for root from localhost
... xcat[17646]: Discover info: configure ip:10.2.1.1 for
pbmc_node:node-8335-gtb-0000000000000000.
... xcat[39175]: xCAT: Allowing rspconfig to node-8335-gtb-0000000000000000
ip=10.2.1.1 for root from localhost
... xcat[17646]: Discovery info: remove pbmc_node:node-8335-gtb-0000000000000000.
... xcat[39184]: xCAT: Allowing rmdef node-8335-gtb-0000000000000000 for root from
localhost
... xcatd: Discovery worker: fsp instance: nodediscover instance: p8r1n1 has been
discovered
... xcat[17646]: Discovery info: configure password for
pbmc_node:node-8335-gtb-0000000000000000.
... xcat[39217]: xCAT: Allowing chdef node-8335-gtb-0000000000000000 bmcusername=
bmcpassword= for root from localhost
... xcat[17646]: Discover info: configure ip:10.2.1.1 for
pbmc_node:node-8335-gtb-0000000000000000.
... xcat[17646]: Discovery info: remove pbmc_node:node-8335-gtb-0000000000000000.

Genesis (DHCP client releases the temporary IP address, and acquires the permanent
IP address):

... dhcpd: DHCPRELEASE of 10.1.254.5 from 98:be:94:59:f0:f2 via enp1s0f0 (found)

... dhcpd: DHCPDISCOVER from 98:be:94:59:f0:f2 via enp1s0f0

... dhcpd: DHCPOFFER on 10.1.1.1 to 98:be:94:59:f0:f2 via enp1s0f0

... dhcpd: DHCPREQUEST for 10.1.1.1 (10.1.0.1) from 98:be:94:59:f0:f2 via enp1s0f0

... dhcpd: DHCPACK on 10.1.1.1 to 98:be:94:59:f0:f2 via enp1s0f0

Genesis (Cleanup of the BMC discovery):

... xcat[39230]: xCAT: Allowing rmdef node-8335-gtb-0000000000000000 for root from
localhost
... xcatd: Discovery worker: fsp instance: nodediscover instance: Failed to notify
10.1.254.5 that it's actually p8r1n1.

Genesis (Further communication with the xCAT Management Node):

... xcat[39233]: xCAT: Allowing getcredentials x509cert from p8r1n1

... xcat: credentials: sending x509cert
Chapter 5. Node and software deployment 235

The Genesis image remains waiting for further instructions from the xCAT Management Node
and is accessible through SSH.

The steps to reset the BMC by using in-band IPMI on the Genesis image and wait for the
BMC to come back online are shown in Example 5-16.

Example 5-16 Resetting the BMC via in-band IPMI on the Genesis image

Reset the BMC via in-band IPMI on the Genesis image:

$ ssh p8r1n1 'ipmitool mc reset cold'

Wait for the BMC to come back online:
(This example is based on the link-local IPv6 address; you can also use the IPv4
address assigned on node discovery; e.g., ping 10.2.1.1)

$ while ! ping6 -c 1 -q fe80::72e2:84ff:fe14:254%enp1s0f3; do echo Waiting; done;
echo; echo Finished
PING fe80::72e2:84ff:fe14:254%enp1s0f3(fe80::72e2:84ff:fe14:254) 56 data bytes

--- fe80::72e2:84ff:fe14:254%enp1s0f3 ping statistics ---
1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0ms

Waiting
PING fe80::72e2:84ff:fe14:254%enp1s0f3(fe80::72e2:84ff:fe14:254) 56 data bytes

--- fe80::72e2:84ff:fe14:254%enp1s0f3 ping statistics ---
1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0ms

<...>
Waiting
PING fe80::72e2:84ff:fe14:254%enp1s0f3(fe80::72e2:84ff:fe14:254) 56 data bytes

--- fe80::72e2:84ff:fe14:254%enp1s0f3 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.606/0.606/0.606/0.000 ms

Finished

You can watch the node discovery on the node console through IPMI. The BMC IP address
can change as a result of the process. Therefore, use the BMC IPv6 link-local address (which
does not change) for that purpose (see Example 5-17).

Example 5-17 Node discovery on the console via IPMI with the rcons on ipmitool commands

With the rcons command:
(require initial configuration with the makeconservercf command):
$ makeconservercf
$ rcons node-8335-gtb-0000000000000000

With the ipmitol command (via IPv6 link-local address):

Note: During the BMC network configuration steps, network connectivity can be lost
(including the IPv6 link-local address). In this case, reset the connection by using in-band
IPMI with the ipmitool command that is included in the Genesis image. This limitation
might be addressed in a future xCAT or firmware version.
236 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

$ ipmitool -I lanplus -H fe80::72e2:84ff:fe14:254%enp1s0f3 -U ADMIN -P admin sol
activate

You can verify that the node object now contains attributes that are obtained during the node
discovery process (for example, hardware characteristics), and other xCAT attributes with the
lsdef command (see Example 5-18).

Example 5-18 Node object with attributes obtained during node discovery

$ lsdef p8r1n1
Object name: p8r1n1
 arch=ppc64
 bmc=10.2.1.1
 cons=ipmi
 cpucount=192
 cputype=POWER8 (raw), altivec supported
 disksize=sda:1000GB,sdb:1000GB
 groups=all,s822lc
 ip=10.1.1.1
 mac=98:be:94:59:f0:f2
 memory=261482MB
 mgt=ipmi
 mtm=8335-GTB
 netboot=petitboot
 nodetype=mp
 postbootscripts=otherpkgs
 postscripts=syslog,remoteshell,syncfiles
 serial=0000000000000000
 status=standingby
 statustime=11-25-2016 23:13:50
 supportedarchs=ppc64

5.6 xCAT Compute Nodes (stateless)

This section describes the deployment of an xCAT Compute Node with the IBM HPC software
that is running on RHEL Server 7.3 for PowerPC 64-bit Little-Endian (ppc64le) in
non-virtualized (or bare-metal) mode on the IBM Power System S822LC server.

The steps that are described in this section cover the stateless (diskless) installation. The
image includes only runtime libraries to keep the image size as small as possible. For more
information about a stateful image with full compiler support, see 5.7, “xCAT Login Nodes
(stateful)” on page 285.

5.6.1 Network interfaces

The network interface that is associated with the management network is known as a primary
network interface (or adapter). The network interfaces that are associated with other
networks are known as secondary (or additional) network interfaces (or adapters).

For more information, see the Configure Additional Network Interfaces - confignics xCAT
documentation page.
Chapter 5. Node and software deployment 237

http://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskless/customize_image/cfg_second_adapter.html
https://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskless/customize_image/cfg_second_adapter.html
https://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskless/customize_image/cfg_second_adapter.html
https://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskless/customize_image/cfg_second_adapter.html

Primary network interface
The primary network interface is the network interface that is connected to the Management
Network. The following attributes are important for this network interface:

� primarynic

This attribute identifies the primary network interface. Set it to mac to use the network
interface with the MAC address specified by the mac attribute (collected during node
discovery).

� installnic

This attribute identifies the network interface that is used for OS installation, which is
usually the primary network interface; therefore, it is recommended that it is set it to mac.

To set the attributes for the primary network interface to mac, complete the following steps:

1. Set the primarynic and installnic by using the chdef command:

$ chdef -t group s822lc \
installnic=mac \
primarynic=mac

1 object definitions have been created or modified.

2. Verify the attributes by using the lsdef command:

$ lsdef -t group s822lc -i installnic,primarynic
Object name: s822lc
 installnic=mac
 primarynic=mac

Secondary network interfaces
The xCAT uses the information from the nics table to configure the network interfaces in the
nodes to be part of the xCAT networks that are defined in the networks table. For example,
the following attributes are used:

� nicips for IP addresses
� nicnetworks for xCAT networks (defined in the networks table)
� nictypes for the type of networks (for example, Ethernet or InfiniBand)
� (optional) nichostnamesuffixes for appending per-network suffixes to host names

The attribute format for the nics table uses several types of field separators, which allows for
each field to relate to multiple network interfaces with multiple values per network interface
(for example, IP addresses and host names). The format is a comma-separated list of
interface!values pairs (that is, one pair per network interface), where values is a
pipe-separated list of values (that is, all values assigned to that network interface).

For values with regular expressions, include the xCAT regular expression delimiters or pattern
around the value (that is, leading pipe, regular expression pattern, separator pipe, value, and
trailing pipe).

Consider the following example:

� Two network interfaces: eth0 and eth1

� Two IP addresses each (eth0 with 192.168.0.1 and 192.168.0.2; eth1 with 192.168.0.3
and 192.168.0.4):

nicips='eth0!192.168.0.1|192.168.0.2,eth1!192.168.0.3|192.168.0.4'
238 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

� Two host name suffixes each (eth0 with -port0ip1 and -port0ip2; eth1 with -port1ip1 and
-port1ip2):

nichostnamesuffixes='eth0!-port0ip1|-port0ip2,eth1!-port1ip1|-port1ip2'

To configure the InfiniBand network interfaces of the compute nodes, complete the following
steps:

1. Set the attributes of the nics table in the node group by using the chdef command:

$ chdef -t group s822lc \
nictypes='ib0!Infiniband' \
nicnetworks='ib0!net-app-ib' \
nichostnamesuffixes='ib0!-ib' \
nicips='|p8r(\d+)n(\d+)|ib0!10.10.($1+0).($2+0)|'

1 object definitions have been created or modified.

2. Verify the attributes by using the lsdef command. They are represented with per-interface
subattributes (that is, <attribute>.<interface>=<values-for-the-interface>):

$ lsdef --nics -t group s822lc
Object name: s822lc
 nichostnamesuffixes.ib0=-ib
 nicips.ib0=10.10.($1+0).($2+0)
 nicnetworks.ib0=net-app-ib
 nictypes.ib0=Infiniband

3. Verify that the attributes that are based on regular expressions have correct values on a
particular node by using the lsdef command:

lsdef --nics p8r1n1
Object name: p8r1n1
 nichostnamesuffixes.ib0=-ib
 nicips.ib0=10.10.1.1
 nicnetworks.ib0=net-app-ib
 nictypes.ib0=Infiniband

4. Update the configuration files for the host table, DNS server, and DHCP server by using
the makehosts, makedns, and makedhcp commands:

$ makehosts s822lc

$ cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
10.1.0.1 xcat-mn.xcat-cluster xcat-mn
10.1.1.1 p8r1n1 p8r1n1.xcat-cluster
10.10.1.1 p8r1n1-ib p8r1n1-ib.xcat-cluster

Note: The following definition results in the same IP:

nicips='|ib0!10.10.($2+0).($3+0)|'

Note: To view the full nicips value, --verbose must be added to the lsdef command.
Chapter 5. Node and software deployment 239

$ makedns -n s822lc
Handling p8r1n1 in /etc/hosts.
Handling p8r1n1-ib in /etc/hosts.
Getting reverse zones, this take several minutes for a large cluster.
Completed getting reverse zones.
Updating zones.
Completed updating zones.
Restarting named
Restarting named complete
Updating DNS records, this take several minutes for a large cluster.
Completed updating DNS records.

$ makedhcp -n
$ makedhcp -a

5. Add the confignics script to the list of postscripts for configuring the network interfaces.
The InfiniBand network interfaces (2-port adapter) require the argument --ibaports=2:

$ chdef -t group s822lc --plus postscripts='confignics --ibaports=2'
1 object definitions have been created or modified.

$ lsdef -t group s822lc -i postscripts
Object name: s822lc
 postscripts=confignics --ibaports=2

For more information about the confignics script and the configuration of InfiniBand
adapters, see the following xCAT documentation pages:

– Configure Additional Network Interfaces - confignics
– IB Network Configuration

Public or site network connectivity (optional)
The connectivity to the public or site networks for the compute nodes can be provided by
using one of the following methods:

� By way of the Management Node by using network address translation (NAT).
� By way of Compute Nodes by using another xCAT network.

To perform the required network configuration, follow the steps of either method.

Management Node method
This method requires that the gateway attribute of the xCAT Management Network is set to
the Management node (default setting, with value “<xcatmaster>”), and NAT rules be
configured in the firewall. To connect, complete the following steps:

1. Verify that the gateway attribute of the Management Network is set to <xcatmaster> by
using the lsdef command:

$ lsdef -t network net-mgmt -i gateway
Object name: net-mgmt
 gateway=<xcatmaster>

Note: If a network interface prefix or suffix is renamed or removed, you can update the
host table by removing the node entry (or nodes or group entries), and adding it (them)
back by using the following commands:

$ makehosts -d nodes
$ makehosts nodes
240 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

https://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskless/customize_image/cfg_second_adapter.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/network_configuration.html
http://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskless/customize_image/cfg_second_adapter.html
https://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskless/customize_image/cfg_second_adapter.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/network_configuration.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/network_configuration.html

If not, set it by using the chdef command:

$ chdef -t network net-mgmt gateway='<xcatmaster>'

2. Verify the routers option of the DHCP server configuration file (based on the gateway
attribute) in the Management Network reflects the IP address of the Management Node:

$ grep 'subnet\|routers' /etc/dhcp/dhcpd.conf
 subnet 10.1.0.0 netmask 255.255.0.0 {
 option routers 10.1.0.1;
 } # 10.1.0.0/255.255.0.0 subnet_end
 subnet 10.2.0.0 netmask 255.255.0.0 {
 option routers 10.2.0.1;
 } # 10.2.0.0/255.255.0.0 subnet_end

If not, regenerate the DHCP server configuration files by using the makedhcp command:

$ makedhcp -n
$ makedhcp -a

3. Verify the default route on the compute nodes is set to the IP address of the Management
Node by using the ip command:

$ xdsh p8r1n1 'ip route show | grep default'
p8r1n1: default via 10.1.0.1 dev enp1s0f0

If not, restart the network service by using the systemctl command:

$ xdsh p8r1n1 'systemctl restart network'

4. Configure the iptables firewall rules for NAT in the rc.local script. Configure it to start
automatically on boot and start the service manually this time.

Consider the following points regarding the network scenario in this chapter:

– Management network on network interface enp1s0f0 is in the management node.
– Public/site network on network interface enp1s0f2 is in the management node.

$ cat <<EOF >>/etc/rc.d/rc.local
iptables -t nat --append POSTROUTING --out-interface enp1s0f2 -j MASQUERADE
iptables --append FORWARD --in-interface enp1s0f0 -j ACCEPT
EOF

$ chmod +x /etc/rc.d/rc.local
$ systemctl start rc-local

5. You can verify the network connectivity on a running node (if any) by using the ping
command:

$ xdsh p8r1n1 'ping -c1 example.com'
p8r1n1: PING example.com (93.184.216.34) 56(84) bytes of data.
p8r1n1: 64 bytes from 93.184.216.34: icmp_seq=1 ttl=46 time=4.07 ms
<...>

Note: The default firewall in RHEL Server 7.3 is firewalld, which is disabled by xCAT.

For more information about firewalld, see the Using Firewalls RHEL documentation
page.
Chapter 5. Node and software deployment 241

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/sec-Using_Firewalls.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/sec-Using_Firewalls.html

Compute Nodes method
This method requires the gateway attribute of the xCAT Management Network not to be set,
and another xCAT network (for the public or site network) to define the network interface,
address, and gateway to be used. Complete the following steps:

1. Reset the gateway attribute of the Management Network by using the chdef command:

$ chdef -t network net-mgmt gateway=''

$ lsdef -t network net-mgmt -i gateway
Object name: net-mgmt
 gateway=

2. Define a new xCAT network for the public or site network (for example, net-site):

$ mkdef -t network net-site net=9.x.x.x mask=255.255.255.0
1 object definitions have been created or modified.

lsdef -t network
net-app-ib (network)
net-mgmt (network)
net-site (network)
net-svc (network)

$ lsdef -t network net-site
Object name: net-site
 mask=255.255.255.0
 net=9.x.x.x

3. Modify the nics table to include the attributes of the new xCAT network by using the
tabedit command or the chdef command. The network scenario that is described in this
chapter uses a public or site network on network interface enp1s0f1 in the compute
nodes:

$ tabedit nics

OR:

$ chdef -t group s822lc \
nictypes='enp1s0f1!Ethernet,ib0!Infiniband' \
nicnetworks='enp1s0f1!net-site,ib0!net-app-ib' \
nichostnamesuffixes='enp1s0f1!-site,ib0!-ib' \
nicips='|p8r(\d+)n(\d+)|enp1s0f1!9.x.x.(181-$2),ib0!10.10.($1+0).($2+0)|' \
nicextraparams='enp1s0f1!GATEWAY=9.x.x.254'

1 object definitions have been created or modified.

4. Verify the attributes by using the tabdump command or lsdef command:

$ tabdump nics
#node,nicips,nichostnamesuffixes,nichostnameprefixes,nictypes,niccustomscripts,
nicnetworks,nicaliases,nicextraparams,comments,disable
"s822lc","|p8r(\d+)n(\d+)|enp1s0f1!9.x.x.(181-$2),ib0!10.10.($1+0).($2+0)|","en
p1s0f1!-site,ib0!-ib",,"enp1s0f1!Ethernet,ib0!Infiniband",,"enp1s0f1!net-site,i
b0!net-app-ib",,"enp1s0f1!GATEWAY=9.x.x.254",,

$ lsdef --nics -t group s822lc
Object name: s822lc
<...>
 nicextraparams.enp1s0f1=GATEWAY=9.x.x.254
<...>
242 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

nichostnamesuffixes.enp1s0f1=-site
<...>
 nicips.enp1s0f0=9.x.x.(181-$2)
<...>
 nicnetworks.enp1s0f1=net-site
<...>
 nictypes.enp1s0f1=Ethernet

$ lsdef --nics p8r1n1
Object name: p8r1n1
<...>
 nicextraparams.enp1s0f1=GATEWAY=9.x.x.254
<...>
 nichostnamesuffixes.enp1s0f1=-site
<...>
 nicips.enp1s0f1=9.x.x.180
<...>
 nicnetworks.enp1s0f1=net-site
<...>
 nictypes.enp1s0f1=Ethernet

5. Update the host table by using the makehosts command:

$ makehosts -d s822lc
$ makehosts s822lc

$ cat /etc/hosts
<...>
10.1.1.1 p8r1n1 p8r1n1.xcat-cluster
10.10.1.1 p8r1n1-ib p8r1n1-ib.xcat-cluster
9.x.x.180 p8r1n1-site p8r1n1-site.xcat-cluster
<...>

6. Update the DNS server configuration by using the makedns command:

$ makedns -n s822lc
<...>
Handling p8r1n1-site in /etc/hosts.
<...>
Completed updating DNS records.

7. Update the DHCP server configuration by using the makedhcp command:

$ makedhcp -n
$ makedhcp -a

8. You can update the network configuration on a running node (if any) by using the
confignics script of the updatenode command:

$ updatenode p8r1n1 -P confignics

9. You can verify the network connectivity on a running node (if any) by using the ping
command:

$ xdsh p8r1n1 'ping -c1 example.com'
p8r1n1: PING example.com (93.184.216.34) 56(84) bytes of data.
p8r1n1: 64 bytes from 93.184.216.34: icmp_seq=1 ttl=46 time=3.94 ms
<...>
Chapter 5. Node and software deployment 243

5.6.2 RHEL server

The xCAT stores the configuration for installing OSs in objects of type osimage (that is,
operating system image). The copycds command can be used to create osimage objects that
are based on an OS installation disk image (for example, an ISO file).

Setting the password for the root user
To set the root password, complete the following steps:

1. Set the username and password attributes of the system key or row in the passwd table by
using the chtab command:

$ chtab key=system passwd.username=root passwd.password=cluster

2. Verify the attributes by using the tabdump command:

$ tabdump -w key==system passwd
#key,username,password,cryptmethod,authdomain,comments,disable
"system","root","cluster",,,,

Creating an osimage object
Initially, no osimage objects are available:

$ lsdef -t osimage
Could not find any object definitions to display.

To create osimage objects for the RHEL Server 7.3 installation disk image, complete the
following steps:

1. Run the copycds command on the RHEL Server 7.3 ISO file:

$ copycds /mnt/RHEL-7.3-20161019.0-Server-ppc64le-dvd1.iso
Copying media to /install/rhels7.3/ppc64le
Media copy operation successful

2. Verify that the osimage objects are present by using the lsdef command.

$ lsdef -t osimage
rhels7.3-ppc64le-install-compute (osimage)
rhels7.3-ppc64le-install-service (osimage)
rhels7.3-ppc64le-netboot-compute (osimage)
rhels7.3-ppc64le-stateful-mgmtnode (osimage)

For more information about the osimage objects, see 5.3.6, “xCAT OS installation types:
Disks and state” on page 205.

3. Create a copy of the original osimage object, named rh73-compute-stateless.

It is optional, but useful in case multiple osimage objects are maintained (for example, for
multiple or different configurations of the same OS).

Note: If the attributes are not correctly set, the nodeset command shows the following
error message:

nodeset p8r1n1 osimage=rh73-compute-stateless
p8r1n1: Error: Unable to find requested filed <password> from table
<passwd>, with key <key=system,username=root>
Error: Some nodes failed to set up install resources on server
xcat-mn.xcat-cluster, aborting
244 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

You can use the lsdef -z command, which provides the object stanza, modify it (for
example, by using the sed command), and create an object that is based on it by using the
mkdef -z command:

$ osimage=rh73-compute-stateless

$ lsdef -t osimage rhels7.3-ppc64le-netboot-compute -z \
| sed "s/^[^#].*:/$osimage:/" \
| mkdef -z
1 object definitions have been created or modified.

4. Verify the copy osimage object by using the lsdef command:

$ lsdef -t osimage
rh73-compute-stateless (osimage)
rhels7.3-ppc64le-install-compute (osimage)
rhels7.3-ppc64le-install-service (osimage)
rhels7.3-ppc64le-netboot-compute (osimage)
rhels7.3-ppc64le-stateful-mgmtnode (osimage)

5. To view more information about the new osimage, append the name of the object to the
command in the previous step, as shown in Example 5-19.

Example 5-19 Detailed osimage information

lsdef -t osimage $osimage
Object name: rh73-compute-stateless
 exlist=/opt/xcat/share/xcat/netboot/rh/compute.rhels7.ppc64le.exlist
 imagetype=linux
 osarch=ppc64le
 osdistroname=rhels7.3-ppc64le
 osname=Linux
 osvers=rhels7.3
 otherpkgdir=/install/post/otherpkgs/rhels7.3/ppc64le
 pkgdir=/install/rhels7.3/ppc64le
 pkglist=/opt/xcat/share/xcat/netboot/rh/compute.rhels7.ppc64le.pkglist

postinstall=/opt/xcat/share/xcat/netboot/rh/compute.rhels7.ppc64le.postinstall
 profile=compute
 provmethod=netboot
 rootimgdir=/install/netboot/rhels7.3/ppc64le/compute

Changing the pkglist attribute
The use of multiple package lists is convenient for independently organizing the required
packages for each component of the software stack. Although, the xCAT currently does not
support multiple package lists in the pkglist attribute, it does support a package list to
reference the contents of other package lists. This feature provides a way to achieve multiple
package lists.

The following types of entries can be used in the pkglist file:

� RPM name without version numbers

� group/pattern name marked with a “@” (for stateful install only)

Note: The OS can be installed (without other components of the software stack) by using
the nodeset command:

$ nodeset p8r1n1 osimage=rh73-compute-stateless
Chapter 5. Node and software deployment 245

� RPMs to removed after the installation marked with a “-” (for stateful install only)

� #INCLUDE: <full file path># to include other pkglist files

� #NEW_INSTALL_LIST# to signify that the following rpms will be installed with a new rpm
install command (zypper, yum, or rpm as determined by the function that uses this file)

To change the pkglist attribute for a custom package list, complete the following steps:

1. Verify the current pkglist attribute, and assign it to the old_list variable:

$ lsdef -t osimage rh73-compute-stateless -i pkglist
Object name: rh73-compute-stateless
 pkglist=/install/custom/netboot/rhel/rh73-compute.pkglist

$ old_pkglist=/opt/xcat/share/xcat/install/rh/compute.rhels7.pkglist

2. In this example, we include the default RHEL Server 7.3 pkglist and add the numactl
package to it. Create the list that includes the old list. Then, add numactl:

$ new_pkglist=/install/custom/netboot/rh/rh73-compute.pkglist

$ mkdir -p $(dirname $new_pkglist)
$ echo "# RHEL Server 7.3 (original pkglist)" >> $new_pkglist
$ echo "#INCLUDE:${old_pkglist}#" >> $new_pkglist
$ echo "numactl" >> $new_pkglist

3. Verify the contents of the new list. The trailing “#” character at the end of the line is
important for correct pkglist parsing:

$ cat $new_pkglist
RHEL Server 7.3 (original pkglist)
#INCLUDE:/opt/xcat/share/xcat/netboot/rh/compute.rhels7.ppc64le.pkglist#
numactl

4. Change the pkglist attribute to the new list by using the chdef command:

$ chdef -t osimage rh73-compute-stateless pkglist=$new_pkglist
1 object definitions have been created or modified.

5. Verify the pkglist attribute by using the lsdef command:

$ lsdef -t osimage rh73-compute-stateless -i pkglist
Object name: rh73-compute-stateless
 pkglist=/install/custom/netboot/rhel/rh73-compute.pkglist

Changing the rootimgdir attribute
Each stateless image must have its own rootimgdir. The image is stored in the
rootimgdir=/install/netboot/rhels7.3/ppc64le/rh73-compute-stateless directory. It is
recommended to match the last level directory name with the name of the osimage.

Change the rootimgdir to rh73-compute-stateless:

$ lsdef -t osimage rh73-compute-stateless -i rootimgdir
Object name: rh73-compute-stateless
 rootimgdir=/install/netboot/rhels7.3/ppc64le/compute

$ chdef -t osimage rh73-compute-stateless
rootimgdir=/install/netboot/rhels7.3/ppc64le/rh73-compute-stateless

Note: All of your custom files must be in the /install/custom directory for easier
distinction.
246 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

1 object definitions have been created or modified.

5.6.3 CUDA Toolkit

The CUDA Toolkit can be installed with the RPM packages that are contained in the local
repository package that is available for download in the NVIDIA website. The packages are
marked for installation with the otherpkgdir and otherpkglist mechanism to be installed
during the Linux distribution installation.

For more information, see the xCAT RHEL 7.2 LE documentation page.

To install the CUDA Toolkit, complete the following steps:

1. Install the createrepo package for creating package repositories:

$ yum install createrepo

2. Download and extract the CUDA Toolkit RPM package:

$ dir=/tmp/cuda
$ mkdir -p $dir
$ cd $dir

$ curl -sOL https://.../cuda-repo-rhel7-8-0-local-8.0.54-1.ppc64le.rpm
$ rpm2cpio cuda-repo-rhel7-8-0-local-8.0.54-1.ppc64le.rpm | cpio -id
2430295 blocks

3. Copy the extracted package repository to a new /install/software directory:

$ dir_cuda=/install/software/cuda/8.0
$ mkdir -p $dir_cuda

$ ls -1d $dir_cuda/*
/install/software/cuda/8.0/cuda-8.0-54-1.ppc64le.rpm
<...>
/install/software/cuda/8.0/repodata
<...>

$ cd ..
$ rm -r /tmp/cuda

Note: For stateless, installing the CUDA packages must be done in the otherpkglist and
not the pkglist as with stateful.

Note: The CUDA Toolkit is available for download at the NVIDIA CUDA downloads
website.

At the website, click (Operating Systems) Linux → (Architecture) ppc64le →
(Distribution) RHEL → (Version) 7 → (Installer Type) rpm (local) → Download.

Note: All other software packages are in the central /install/software directory.
Chapter 5. Node and software deployment 247

https://xcat-docs.readthedocs.io/en/latest/advanced/gpu/nvidia/osimage/rhels.html
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads

4. The CUDA Toolkit contains RPMs that depend on the dkms package. This dkms package is
provided by Extra Packages for Enterprise Linux (EPEL). For more information about
EPEL, see fedora’s EPEL wiki page. Download the dkms RPM package from EPEL:

$ dir_deps=/install/software/cuda/deps
$ mkdir -p $dir_deps
$ cd $dir_deps

$ epel_url="https://dl.fedoraproject.org/pub/epel/7/ppc64le"
$ dkms_path="${epel_url}/d/$(curl -sL ${epel_url}/d | grep -o
'href="dkms-.*\.noarch\.rpm"' | cut -d '"' -f 2)"
$ curl -sOL "$dkms_path"

$ ls -1
dkms-2.2.0.3-34.git.9e0394d.el7.noarch.rpm

5. Create a package repository for it by using the createrepo command:

$ createrepo .
<...>

$ ls -1
dkms-2.2.0.3-34.git.9e0394d.el7.noarch.rpm
repodata

6. Create symlinks from the otherpkglist directory to software directory:

$ lsdef -t osimage rh73-compute-stateless -i otherpkgdir
Object name: rh73-compute-stateless
 otherpkgdir=/install/post/otherpkgs/rhels7.3/ppc64le

$ otherpkgdir=/install/post/otherpkgs/rhels7.3/ppc64le
$ cd $otherpkgdir

$ ln -s $dir_cuda cuda-8.0
$ ln -s $dir_deps cuda-deps

$ ls -l
lrwxrwxrwx 1 root root 26 22. Nov 15:55 cuda-8.0 -> /install/software/cuda/8.0
lrwxrwxrwx 1 root root 27 22. Nov 15:55 cuda-deps ->
/install/software/cuda/deps

7. Create the otherpkglist file with relative paths from otherpkgdir to cuda-runtime and
dkms package:

$ lsdef -t osimage rh73-compute-stateless -i pkglist,otherpkgdir,otherpkglist
Object name: rh73-compute-stateless
 otherpkgdir=/install/post/otherpkgs/rhels7.3/ppc64le
 otherpkglist=
 pkglist=/install/custom/netboot/rhel/rh73-compute.pkglist

$ otherpkgdir=/install/post/otherpkgs/rhels7.3/ppc64le
$ otherpkglist=/install/custom/netboot/rhel/rh73-compute.otherpkglist

$ cd $otherpkgdir; find -L * -type f \(-name "cuda-runtime*" -o -name "dkms*"
\)
cuda-8.0/cuda-runtime-8-0-8.0.54-1.ppc64le.rpm
cuda-deps/dkms-2.2.0.3-34.git.9e0394d.el7.noarch.rpm
248 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://fedoraproject.org/wiki/EPEL

$ cat <<EOF >>$otherpkglist
$ CUDA
cuda-deps/dkms
cuda-8.0/cuda-runtime-8-0
EOF

8. Set the otherpkglist attribute for the osimage:

$ chdef -t osimage rh73-compute-stateless --plus otherpkglist=$otherpkglist
1 object definitions have been created or modified.

$ lsdef -t osimage rh73-compute-stateless -i otherpkgdir,otherpkglist
Object name: rh73-compute-stateless
 otherpkgdir=/install/post/otherpkgs/rhels7.3/ppc64le
 otherpkglist=/install/custom/netboot/rhel/rh73-compute.otherpkglist

5.6.4 Mellanox OFED

To install the Mellanox OFED for Linux, complete the following steps.

For more information, see the following xCAT documentation resources:

� Mellanox OFED Installation Script - Preparation page
� IB Network Configuration page

1. Download and copy the ISO file to the xCAT installation directory:

$ dir=/install/software/mofed
$ mkdir -p $dir

$ Download via browser, then scp to xcat management server
$ scp MLNX_OFED_LINUX-3.4-2.0.0.1-rhel7.3-ppc64le.iso
xcat-mn:/install/software/mofed

2. Copy the mlnxofed_ib_install.v2 script into the postscripts directory (with the required
file name mlnxofed_ib_install). This script is a sample script intended to assist with the
installation of the Mellanox OFED drivers:

$ script=/install/postscripts/mlnxofed_ib_install
$ cp /opt/xcat/share/xcat/ib/scripts/Mellanox/mlnxofed_ib_install.v2 $script
$ chmod +x $script
$ ls -l $script
-rwxr-xr-x 1 root root 16269 22. Nov 10:51
/install/postscripts/mlnxofed_ib_install

Note: The Mellanox OFED is available for download from the Mellanox downloads
website.

At the website, click IBM HPC and Technical Clusters → 8335-GTB →
MLNX_OFED_LINUX-3.4-2.0.0.1-rhel7.3-ppc64le.iso

Because you must accept a user agreement, the package must be downloaded by
using a browser.
Chapter 5. Node and software deployment 249

http://www.mellanox.com/page/firmware_table_IBM_SystemP
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/mlnxofed_ib_install_v2_preparation.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/network_configuration.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/mlnxofed_ib_install_v2_preparation.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/mlnxofed_ib_install_v2_preparation.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/network_configuration.html
http://xcat-docs.readthedocs.org/en/latest/advanced/networks/infiniband/network_configuration.html
http://www.mellanox.com/page/firmware_table_IBM_SystemP
http://www.mellanox.com/page/firmware_table_IBM_SystemP

3. Create a custom postinstall script that runs mlnxofed_ib_install and include it in the
osimage definition.

4. Include the --add-kernel-support argument to the list of default arguments
(--without-32bit --without-fw-update --force), according to the xCAT documentation
to rebuild kernel modules for the installed kernel version.

Also, clear the /tmp directory after successful installation:

$ file=MLNX_OFED_LINUX-3.4-2.0.0.1-rhel7.3-ppc64le.iso
$ args='--add-kernel-support --without-32bit --without-fw-update --force'

$ lsdef -t osimage rh73-compute-stateless -i postinstall
Object name: rh73-compute-stateless

postinstall=/opt/xcat/share/xcat/netboot/rh/compute.rhels7.ppc64le.postinstall
$
postinstall=/opt/xcat/share/xcat/netboot/rh/compute.rhels7.ppc64le.postinstall
$ new_postinstall=/install/custom/netboot/rhel/rh73-compute.postinstall
$ cp $postinstall $new_postinstall

$ echo "# Install InfiniBand MOFED" >> $new_postinstall
$ echo "/install/postscripts/mlnxofed_ib_install -p $dir/$file -m $args -end-
-i \$installroot -n genimage" >> $new_postinstall
$ echo "rm -rf \$installroot/tmp/MLNX_OFED_LINUX*" >> $new_postinstall

$ cat $new_postinstall
<...>
Install InfiniBand MOFED
/install/postscripts/mlnxofed_ib_install -p
/install/software/mofed/MLNX_OFED_LINUX-3.4-2.0.0.1-rhel7.3-ppc64le.iso -m
--add-kernel-support --without-32bit --without-fw-update --force -end- -i
$installroot -n genimage
rm -rf $installroot/tmp/MLNX_OFED_LINUX*

$ chdef -t osimage rh73-compute-stateless postinstall=$new_postinstall
1 object definitions have been created or modified.
$ lsdef -t osimage rh73-compute-stateless -i postinstall
Object name: rh73-compute-stateless
 postinstall=/install/custom/netboot/rhel/rh73-compute.postinstall

5. Certain dependency packages are required to install Mellanox OFED correctly. Add the
InfiniBand package list that is provided by xCAT to the package list:

$ ib_list=/opt/xcat/share/xcat/ib/netboot/rh/ib.rhels7.ppc64le.pkglist

$ lsdef -t osimage rh73-compute-stateless -i pkglist
Object name: rh73-compute-stateless
 pkglist=/install/custom/netboot/rhel/rh73-compute.pkglist
$ pkglist=/install/custom/netboot/rhel/rh73-compute.pkglist
$ cat $pkglist

RHEL Server 7.3 (original pkglist)
#INCLUDE:/opt/xcat/share/xcat/netboot/rh/compute.rhels7.ppc64le.pkglist#
numactl

Note: The -i $installroot argument is the installation root directory and is passed to
the postinstallation script at run time as $1.
250 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

$ echo "# InfiniBand MOFED Dependencies (sample pkglist)" >> $pkglist
$ echo "#INCLUDE:${ib_list}#" >> $pkglist

$ cat $pkglist
RHEL Server 7.3 (original pkglist)
#INCLUDE:/opt/xcat/share/xcat/netboot/rh/compute.rhels7.ppc64le.pkglist#
numactl
InfiniBand MOFED Dependencies (sample pkglist)
#INCLUDE:/opt/xcat/share/xcat/ib/netboot/rh/ib.rhels7.ppc64le.pkglist#

5.6.5 XL C/C++ runtime libraries

To install the XL C/C++ Compiler xCAT software kit, complete the following steps. For more
information, see the following xCAT IBM XL Compilers documentation page:

1. Download the partial kit (distributed by the xCAT project):

$ mkdir /tmp/xlc
$ cd /tmp/xlc

$ curl -sOL
https://xcat.org/files/kits/hpckits/2.12/rhels7.3/ppc64le/xlc-13.1.5-0-ppc64le.
NEED_PRODUCT_PKGS.tar.bz2

2. Build the complete kit by combining the partial kit and the product packages by using the
buildkit command:

$ dir=/install/software/compilers/xlc

$ ls -1 $dir
libxlc-13.1.5.0-161028a.ppc64le.rpm
libxlc-devel.13.1.5-13.1.5.0-161028a.ppc64le.rpm
libxlmass-devel.8.1.5-8.1.5.0-161021a.ppc64le.rpm
libxlsmp-4.1.5.0-161025.ppc64le.rpm
libxlsmp-devel.4.1.5-4.1.5.0-161025.ppc64le.rpm
xlc-13.1.5-0-ppc64le.tar.bz2
xlc.13.1.5-13.1.5.0-161028a.ppc64le.rpm
xlc.compiler-compute-13.1.5-0.noarch.rpm
xlc-license.13.1.5-13.1.5.0-161028a.ppc64le.rpm
xlc.license-compute-13.1.5-0.noarch.rpm
xlc.rte-compute-13.1.5-0.noarch.rpm

$ buildkit addpkgs xlc-13.1.5-0-ppc64le.NEED_PRODUCT_PKGS.tar.bz2 --pkgdir $dir
Extracting tar file /tmp/xlc/xlc-13.1.5-0-ppc64le.NEED_PRODUCT_PKGS.tar.bz2.
Please wait.
<...>
Kit tar file /tmp/xlc/xlc-13.1.5-0-ppc64le.tar.bz2 successfully built.

$ ls -1
xlc-13.1.5-0-ppc64le.NEED_PRODUCT_PKGS.tar.bz2
xlc-13.1.5-0-ppc64le.tar.bz2

3. Add the kit to xCAT by using the addkit command:

$ lsdef -t kit
Could not find any object definitions to display.
Chapter 5. Node and software deployment 251

https://xcat-docs.readthedocs.io/en/latest/advanced/kit/hpc/software/compilers.html

$ addkit xlc-13.1.5-0-ppc64le.tar.bz2
Adding Kit xlc-13.1.5-0-ppc64le
Kit xlc-13.1.5-0-ppc64le was successfully added.

$ lsdef -t kit
xlc-13.1.5-0-ppc64le (kit)

$ cd ..
$ rm -r /tmp/xlc

4. Verify its kitcomponent objects (and description fields) by using the lsdef command:

$ lsdef -t kitcomponent -w kitname==xlc-13.1.5-0-ppc64le -i description
Object name: xlc.compiler-compute-13.1.5-0-rhels-7-ppc64le
 description=XLC13 for compiler kitcomponent
Object name: xlc.license-compute-13.1.5-0-rhels-7-ppc64le
 description=XLC13 license kitcomponent
Object name: xlc.rte-compute-13.1.5-0-rhels-7-ppc64le
 description=XLC13 for runtime kitcomponent

5. Add the following kitcomponent (and dependencies) to the osimage object by using the
addkitcomp command:

$ lsdef -t osimage rh73-compute-stateless -i kitcomponents,otherpkglist
Object name: rh73-compute-stateless
 kitcomponents=
 otherpkglist=/install/custom/netboot/rhel/rh73-compute.otherpkglist

$ addkitcomp --adddeps -i rh73-compute-stateless \
xlc.rte-compute-13.1.5-0-rhels-7-ppc64le
Assigning kit component xlc.rte-compute-13.1.5-0-rhels-7-ppc64le to osimage
rh73-compute-stateless
Kit components xlc.rte-compute-13.1.5-0-rhels-7-ppc64le were added to osimage
rh73-compute-stateless successfully

$ lsdef -t osimage rh73-compute-stateless -i kitcomponents,otherpkglist
Object name: rh73-compute-stateless

kitcomponents=xlc.license-compute-13.1.5-0-rhels-7-ppc64le,xlc.rte-compute-13.1
.5-0-rhels-7-ppc64le

otherpkglist=/install/osimages/rh73-compute-stateless/kits/KIT_DEPLOY_PARAMS.ot
herpkgs.pkglist,/install/custom/netboot/rhel/rh73-compute.otherpkglist,/install
/osimages/rh73-compute-stateless/kits/KIT_COMPONENTS.otherpkgs.pkglist

Note: For more information about the use of a subset of compute nodes for compiling
applications, see 5.7, “xCAT Login Nodes (stateful)” on page 285.
252 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

5.6.6 XL Fortran runtime libraries

To install the XL Fortran Compiler xCAT kit, complete the following steps. For more
information, see the xCAT IBM XL Compilers documentation page:

1. Download the partial kit (distributed by the xCAT project):

$ mkdir /tmp/xlf
$ cd /tmp/xlf

$ curl -sOL
https://xcat.org/files/kits/hpckits/2.12/rhels7.3/ppc64le/xlf-15.1.5-0-ppc64le.
NEED_PRODUCT_PKGS.tar.bz2

2. Build the complete kit by combining the partial kit and the product packages that are
distributed in the installation media by using the buildkit command:

$ dir=/install/software/compilers/xlf

$ ls -1 $dir
libxlf-15.1.5.0-161028a.ppc64le.rpm
libxlf-devel.15.1.5-15.1.5.0-161028a.ppc64le.rpm
libxlmass-devel.8.1.5-8.1.5.0-161021a.ppc64le.rpm
libxlsmp-4.1.5.0-161025.ppc64le.rpm
libxlsmp-devel.4.1.5-4.1.5.0-161025.ppc64le.rpm
xlf-15.1.5-0-ppc64le.tar.bz2
xlf.15.1.5-15.1.5.0-161028a.ppc64le.rpm
xlf.compiler-compute-15.1.5-0.noarch.rpm
xlf-license.15.1.5-15.1.5.0-161028a.ppc64le.rpm
xlf.license-compute-15.1.5-0.noarch.rpm
xlf.rte-compute-15.1.5-0.noarch.rpm

$ buildkit addpkgs xlf-15.1.5-0-ppc64le.NEED_PRODUCT_PKGS.tar.bz2 --pkgdir $dir
Extracting tar file /tmp/xlf/xlf-15.1.5-0-ppc64le.NEED_PRODUCT_PKGS.tar.bz2.
Please wait. <...>
Kit tar file /tmp/xlf/xlf-15.1.5-0-ppc64le.tar.bz2 successfully built.

$ ls -1
xlf-15.1.5-0-ppc64le.NEED_PRODUCT_PKGS.tar.bz2
xlf-15.1.5-0-ppc64le.tar.bz2

3. Add the kit to xCAT by using the addkit command:

$ addkit xlf-15.1.5-0-ppc64le.tar.bz2
Adding Kit xlf-15.1.5-0-ppc64le
Kit xlf-15.1.5-0-ppc64le was successfully added.

$ lsdef -t kit
xlc-13.1.5-0-ppc64le (kit)
xlf-15.1.5-0-ppc64le (kit)

$ cd ..
$ rm -r /tmp/xlf

4. Verify its kitcomponent objects (and description fields) by using the lsdef command:

$ lsdef -t kitcomponent -w kitname==xlf-15.1.5-0-ppc64le -i description
Object name: xlf.compiler-compute-15.1.5-0-rhels-7-ppc64le
 description=XLF15 for compiler kitcomponent
Object name: xlf.license-compute-15.1.5-0-rhels-7-ppc64le
Chapter 5. Node and software deployment 253

https://xcat-docs.readthedocs.io/en/latest/advanced/kit/hpc/software/compilers.html

 description=XLF15 license kitcomponent
Object name: xlf.rte-compute-15.1.5-0-rhels-7-ppc64le
 description=XLF15 for runtime kitcomponent

5. Add the following kitcomponent (and dependencies) to the osimage object by using the
addkitcomp command:

$ addkitcomp --adddeps -i rh73-compute-stateless \
xlf.rte-compute-15.1.5-0-rhels-7-ppc64le
Assigning kit component xlf.rte-compute-15.1.5-0-rhels-7-ppc64le to osimage
rh73-compute-stateless
Kit components xlf.rte-compute-15.1.5-0-rhels-7-ppc64le were added to osimage
rh73-compute-stateless successfully

$ lsdef -t osimage rh73-compute-stateless -i kitcomponents
Object name: rh73-compute-stateless

kitcomponents=xlc.license-compute-13.1.5-0-rhels-7-ppc64le,xlc.rte-compute-13.1
.5-0-rhels-7-ppc64le,xlf.license-compute-15.1.5-0-rhels-7-ppc64le,xlf.rte-compu
te-15.1.5-0-rhels-7-ppc64le

5.6.7 Advance Toolchain runtime libraries

To install the Advance Toolchain, complete the following steps:

1. Download the product packages:

$ dir=/install/software/compilers/at
$ mkdir -p $dir
$ cd $dir

$ wget
'ftp://ftp.unicamp.br/pub/linuxpatch/toolchain/at/redhat/RHEL7/at10.0/*-10.0-1.
ppc64le.rpm'
<...>

$ ls -1
advance-toolchain-at10.0-devel-10.0-1.ppc64le.rpm
advance-toolchain-at10.0-devel-debuginfo-10.0-1.ppc64le.rpm
advance-toolchain-at10.0-mcore-libs-10.0-1.ppc64le.rpm
advance-toolchain-at10.0-mcore-libs-debuginfo-10.0-1.ppc64le.rpm
advance-toolchain-at10.0-perf-10.0-1.ppc64le.rpm
advance-toolchain-at10.0-perf-debuginfo-10.0-1.ppc64le.rpm
advance-toolchain-at10.0-runtime-10.0-1.ppc64le.rpm
advance-toolchain-at10.0-runtime-at9.0-compat-10.0-1.ppc64le.rpm
advance-toolchain-at10.0-runtime-debuginfo-10.0-1.ppc64le.rpm
advance-toolchain-at10.0-selinux-10.0-1.ppc64le.rpm
advance-toolchain-golang-at-10.0-1.ppc64le.rpm

2. Create a package repository by using the createrepo command:

$ createrepo .
<...>

Note: For more information about the latest download links, see the Supported Linux
Distributions section of the IBM Advance Toolchain for PowerLinux™ Documentation
website.
254 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

https://ibm.co/2nSX3lO
https://ibm.co/2nSX3lO
https://ibm.co/2nSX3lO

3. Add packages to otherkglist of osimage:

$ lsdef -t osimage rh73-compute-stateless -i otherpkglist,otherpkgdir
Object name: rh73-compute-stateless
 otherpkgdir=/install/post/otherpkgs/rhels7.3/ppc64le

otherpkglist=/install/osimages/rh73-compute-stateless/kits/KIT_DEPLOY_PARAMS.ot
herpkgs.pkglist,/install/custom/netboot/rhel/rh73-compute.otherpkglist,/install
/osimages/rh73-compute-stateless/kits/KIT_COMPONENTS.otherpkgs.pkglist

$ otherpkgdir=/install/post/otherpkgs/rhels7.3/ppc64le
$ otherpkglist=/install/custom/netboot/rhel/rh73-compute.otherpkglist

$ cd $otherpkgdir
$ ln -s $dir at

$ ls -l
lrwxrwxrwx 1 root root 20 22. Nov 16:45 at -> /install/software/compilers/at
lrwxrwxrwx 1 root root 26 22. Nov 15:55 cuda-8.0 -> /install/software/cuda/8.0
lrwxrwxrwx 1 root root 27 22. Nov 15:55 cuda-deps ->
/install/software/cuda/deps
lrwxrwxrwx 1 root root 69 22. Nov 15:07 xlc-13.1.5-0-rhels-7-ppc64le ->
/install/kits/xlc-13.1.5-0-ppc64le/repos/xlc-13.1.5-0-rhels-7-ppc64le
lrwxrwxrwx 1 root root 69 22. Nov 15:24 xlf-15.1.5-0-rhels-7-ppc64le ->
/install/kits/xlf-15.1.5-0-ppc64le/repos/xlf-15.1.5-0-rhels-7-ppc64le

$ echo "# Advance Toolchain" >> $otherpkglist
$ echo "at/advance-toolchain-at10.0-runtime" >> $otherpkglist
$ echo "at/advance-toolchain-at10.0-mcore-libs" >> $otherpkglist

$ cat $otherpkglist
CUDA
cuda-deps/dkms
cuda-8.0/cuda-runtime-8-0
Advance Toolchain
at/advance-toolchain-at10.0-runtime
at/advance-toolchain-at10.0-mcore-libs

5.6.8 PGI runtime libraries

To install PGI runtime libraries for OpenACC, complete the following steps:

Note: Advance Toolchain is approximately 2 GB after installation. For stateless nodes,
it is recommended to install this package in a shared file system to save main memory
on the compute node.

Note: The PGI Compilers are available for download at the PGI Community Edition page of
the PGI Compilers and Tools website.

At the website, click Linux OpenPOWER to begin the download process.

Because you must accept a user agreement, must download this package with a browser.

No PGI Compiler runtime libraries-only package are available. Therefore, libraries must be
copied manually.
Chapter 5. Node and software deployment 255

http://www.pgroup.com/products/community.htm
http://www.pgroup.com/products/community.htm

1. Download and copy downloaded package to management node:

$ dir=/install/software/compilers/pgi
$ mkdir -p $dir

Download via browser, then scp to xcat management server
$ scp pgilinux-2016-1610-ppc64le.tar.gz xcat-mn:/install/software/compilers/pgi

2. Extract the package:

$ cd $dir
$ tar -xf pgilinux-2016-1610-ppc64le.tar.gz

$ ls -1
documentation.html
install
install_components
pgilinux-2016-1610-ppc64le.tar.gz

$ libdir=install_components/linuxpower/16.10/lib
$ ls -1 $dir/$libdir
$ ls -1 $dir/$libdir/*.so*
/install/software/compilers/pgi/install_components/linuxpower/16.10/lib/libacca
pimp.so
/install/software/compilers/pgi/install_components/linuxpower/16.10/lib/libacca
pi.so
<...>

3. Include libraries in the osimage definition with the help of a postscript that is running in
postinstall. The postscript copies the libraries to the root image:

$ lsdef -t osimage rh73-compute-stateless -i postinstall
Object name: rh73-compute-stateless
 postinstall=/install/custom/netboot/rhel/rh73-compute.postinstall
$ postinstall=/install/custom/netboot/rhel/rh73-compute.postinstall

$ installscript=/install/postscripts/install_pgilibs
$ cat <<EOF > $installscript

#!/bin/bash
This script installs PGI libraries
It should run in postinstall

installroot=\$1
pgilibs=/opt/pgi/lib

echo "Installing PGI libraries ..."
mkdir -p \${installroot}\${pgilibs}
cp -rav $dir/$libdir/*.so* \${installroot}\${pgilibs}

Add library path to ld config
echo \$pgilibs > \${installroot}/etc/ld.so.conf.d/pgi.conf
EOF

chmod +x $installscript

$ echo "# Install PGI libraries" >> $postinstall
$ echo "$installscript \$installroot" >> $postinstall
256 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

4. A postscript that is running after boot is needed to update runtime library bindings
accordingly. This update cannot be done in postinstall because it is not running in
chroot. Create such a script and add it to the node or nodegroup definition:

$ configscript=/install/postscripts/config_pgilibs
$ cat <<EOF > /install/postscripts/config_pgilibs

#!/bin/bash
This script will update run time library bindings

ldconfig
EOF

$ chmod +x $configscript

$ chdef -t node p8r1n1 --plus postscripts=config_pgilibs
1 object definitions have been created or modified.

$ lsdef -t node p8r1n1 -i postscripts
Object name: p8r1n1
 postscripts=syslog,remoteshell,syncfiles,confignics -s,confignics
--ibaports=2,setroute,config_pgilibs

5.6.9 SMPI

To install IBM Spectrum MPI, complete the following steps:

1. Add the kit (distributed with the product media) to xCAT by using the addkit command:

$ addkit /path/to/smpi-files/ibm_smpi_kt-10.1.0.2-rh73-ppc64le.tar.bz2
Adding Kit ibm_smpi_kt-10.1.0.2-rh7-ppc64le
Kit ibm_smpi_kt-10.1.0.2-rh7-ppc64le was successfully added.

$ lsdef -t kit
ibm_smpi_kt-10.1.0.2-rh7-ppc64le (kit)
xlc-13.1.5-0-ppc64le (kit)
xlf-15.1.5-0-ppc64le (kit)

2. Verify its kitcomponent objects (and description fields) by using the lsdef command:

$ lsdef -t kitcomponent -w kitname==ibm_smpi_kt-10.1.0.2-rh7-ppc64le -i
description
Object name: ibm_spectrum_mpi-full-10.1.0.2-rh7-rhels-7-ppc64le
 description=IBM Spectrum MPI full installation
Object name: ibm_spectrum_mpi_license-10.1.0.2-rh7-rhels-7-ppc64le
 description=IBM Spectrum MPI license

3. Add the following kitcomponent (and dependencies) to the osimage object by using the
addkitcomp command:

$ addkitcomp --adddeps -i rh73-compute-stateless \
ibm_spectrum_mpi-full-10.1.0.2-rh7-rhels-7-ppc64le
Assigning kit component ibm_spectrum_mpi-full-10.1.0.2-rh7-rhels-7-ppc64le to
osimage rh73-compute-stateless
Kit components ibm_spectrum_mpi-full-10.1.0.2-rh7-rhels-7-ppc64le were added to
osimage rh73-compute-stateless successfully

Note: IBM Spectrum MPI substitutes IBM PE Runtime Environment.
Chapter 5. Node and software deployment 257

$ lsdef -t osimage rh73-compute-stateless -i kitcomponents
Object name: rh73-compute-stateless

kitcomponents=xlc.license-compute-13.1.5-0-rhels-7-ppc64le,xlc.rte-compute-13.1
.5-0-rhels-7-ppc64le,xlf.license-compute-15.1.5-0-rhels-7-ppc64le,xlf.rte-compu
te-15.1.5-0-rhels-7-ppc64le,ibm_spectrum_mpi_license-10.1.0.2-rh7-rhels-7-ppc64
le,ibm_spectrum_mpi-full-10.1.0.2-rh7-rhels-7-ppc64le

5.6.10 PPT

To install IBM Parallel Performance Toolkit, complete the following steps:

1. Add the kit (distributed with the product media) to xCAT by using the addkit command:

$ addkit /path/to/ppt-files/ppedev-2.3.0-0.tar.bz2
Adding Kit ppedev-2.3.0-0
Kit ppedev-2.3.0-0 was successfully added.

$ lsdef -t kit
ibm_smpi_kt-10.1.0.2-rh7-ppc64le (kit)
ppedev-2.3.0-0 (kit)
xlc-13.1.5-0-ppc64le (kit)
xlf-15.1.5-0-ppc64le (kit)

2. Verify its kitcomponent objects (and description fields) by using the lsdef command:

$ lsdef -t kitcomponent -w kitname==ppedev-2.3.0-0 -i description
Object name: ppedev.compute-2.3.0-0-rhels-7.3-ppc64le
 description=Parallel Performance Toolkit for compute nodes
Object name: ppedev.license-2.3.0-0-rhels-7.3-ppc64le
 description=Parallel Performance Toolkit license package
Object name: ppedev.login-2.3.0-0-rhels-7.3-ppc64le
 description=Parallel Performance Toolkit for login nodes

3. Add the following kitcomponent (and dependencies) to the osimage object by using the
addkitcomp command:

$ addkitcomp --adddeps -i rh73-compute-stateless \
ppedev.compute-2.3.0-0-rhels-7.3-ppc64le
Assigning kit component ppedev.compute-2.3.0-0-rhels-7.3-ppc64le to osimage
rh73-compute-stateless
Kit components ppedev.compute-2.3.0-0-rhels-7.3-ppc64le were added to osimage
rh73-compute-stateless successfully

$ lsdef -t osimage rh73-compute-stateless -i kitcomponents
Object name: rh73-compute-stateless

kitcomponents=xlc.license-compute-13.1.5-0-rhels-7-ppc64le,xlc.rte-compute-13.1
.5-0-rhels-7-ppc64le,xlf.license-compute-15.1.5-0-rhels-7-ppc64le,xlf.rte-compu
te-15.1.5-0-rhels-7-ppc64le,ibm_spectrum_mpi_license-10.1.0.2-rh7-rhels-7-ppc64
le,ibm_spectrum_mpi-full-10.1.0.2-rh7-rhels-7-ppc64le,ppedev.license-2.3.0-0-rh
els-7.3-ppc64le,ppedev.compute-2.3.0-0-rhels-7.3-ppc64le

Note: IBM Parallel Performance Toolkit substitutes IBM PE Developer Edition. However,
the xCAT software kit is still named ppedev.
258 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

5.6.11 ESSL

To install ESSL, complete the following steps:

1. Add the kit (distributed with the product media) to xCAT by using the addkit command:

$ addkit /path/to/essl-files/essl-5.5.0-0-ppc64le.tar.bz2
Adding Kit essl-5.5.0-0-ppc64le
Kit essl-5.5.0-0-ppc64le was successfully added.

$ lsdef -t kit
essl-5.5.0-0-ppc64le (kit)
ibm_smpi_kt-10.1.0.2-rh7-ppc64le (kit)
ppedev-2.3.0-0 (kit)
xlc-13.1.5-0-ppc64le (kit)
xlf-15.1.5-0-ppc64le (kit)

2. Verify its kitcomponent objects (and description fields) by using the lsdef command:

$ lsdef -t kitcomponent -w kitname==essl-5.5.0-0-ppc64le -i description
Object name: essl-computenode-3264rte-5.5.0-0-rhels-7.3-ppc64le
 description=essl for compute nodes with 3264 rte only
Object name: essl-computenode-3264rtecuda-5.5.0-0-rhels-7.3-ppc64le
 description=essl for compute nodes with 3264 rte cuda only
Object name: essl-computenode-5.5.0-0-rhels-7.3-ppc64le
 description=essl for compute nodes
Object name: essl-computenode-6464rte-5.5.0-0-rhels-7.3-ppc64le
 description=essl for compute nodes with 6464 rte only
Object name: essl-computenode-nocuda-5.5.0-0-rhels-7.3-ppc64le
 description=essl for compute nodes
Object name: essl-license-5.5.0-0-rhels-7.3-ppc64le
 description=essl license for compute nodes
Object name: essl-loginnode-5.5.0-0-rhels-7.3-ppc64le
 description=essl for login nodes
Object name: essl-loginnode-nocuda-5.5.0-0-rhels-7.3-ppc64le
 description=essl for login nodes

3. Add the following kitcomponent (and dependencies) to the osimage object by using the
addkitcomp command:

$ addkitcomp --adddeps -i rh73-compute-stateless \
essl-computenode-5.5.0-0-rhels-7.3-ppc64le
Assigning kit component essl-computenode-5.5.0-0-rhels-7.3-ppc64le to osimage
rh73-compute-stateless
Kit components essl-computenode-5.5.0-0-rhels-7.3-ppc64le were added to osimage
rh73-compute-stateless successfully

$ lsdef -t osimage rh73-compute-stateless -i kitcomponents
Object name: rh73-compute-stateless

Note: To perform development/profiling tasks on a compute node, install the following
kitcomponent:

ppedev.login-2.3.0-0-rhels-7.3-ppc64le

Note: ESSL version 5.5.0.0 needs a CUDA version >= 8.0.54.
Chapter 5. Node and software deployment 259

kitcomponents=xlc.license-compute-13.1.5-0-rhels-7-ppc64le,xlc.rte-compute-13.1
.5-0-rhels-7-ppc64le,xlf.license-compute-15.1.5-0-rhels-7-ppc64le,xlf.rte-compu
te-15.1.5-0-rhels-7-ppc64le,ibm_spectrum_mpi_license-10.1.0.2-rh7-rhels-7-ppc64
le,ibm_spectrum_mpi-full-10.1.0.2-rh7-rhels-7-ppc64le,ppedev.license-2.3.0-0-rh
els-7.3-ppc64le,ppedev.compute-2.3.0-0-rhels-7.3-ppc64le,essl-license-5.5.0-0-r
hels-7.3-ppc64le,essl-computenode-5.5.0-0-rhels-7.3-ppc64le

5.6.12 PESSL

To install PESSL, complete the following steps:

1. Add the kit (distributed with the product media) to xCAT by using the addkit command:

$ addkit /path/to/pessl-files/pessl-5.3.0-0-ppc64le.tar.bz2
Adding Kit pessl-5.3.0-0-ppc64le.tar.bz2
Kit pessl-5.3.0-0-ppc64le was successfully added.

$ lsdef -t kit
essl-5.5.0-0-ppc64le (kit)
ibm_smpi_kt-10.1.0.2-rh7-ppc64le (kit)
pessl-5.3.0-0-ppc64le (kit)
ppedev-2.3.0-0 (kit)
xlc-13.1.5-0-ppc64le (kit)
xlf-15.1.5-0-ppc64le (kit)

2. Verify its kitcomponent objects (and description fields) by using the lsdef command:

$ lsdef -t kitcomponent -w kitname==pessl-5.3.0-0-ppc64le -i description
Object name: pessl-computenode-3264rte-5.3.0-0-rhels-7.3-ppc64le
 description=pessl for compute nodes with ESSL non-cuda runtime
Object name: pessl-computenode-5.3.0-0-rhels-7.3-ppc64le
 description=pessl for compute nodes
Object name: pessl-computenode-nocuda-5.3.0-0-rhels-7.3-ppc64le
 description=pessl for compute nodes
Object name: pessl-license-5.3.0-0-rhels-7.3-ppc64le
 description=pessl license for compute nodes
Object name: pessl-loginnode-5.3.0-0-rhels-7.3-ppc64le
 description=pessl for login nodes
Object name: pessl-loginnode-nocuda-5.3.0-0-rhels-7.3-ppc64le
 description=pessl for login nodes

3. Add the following kitcomponent (and dependencies) to the osimage object by using the
addkitcomp command:

$ addkitcomp --adddeps -i rh73-compute-stateless \
pessl-computenode-5.3.0-0-rhels-7.3-ppc64le
Assigning kit component pessl-computenode-5.3.0-0-rhels-7.3-ppc64le to osimage
rh73-compute-stateless
Kit components pessl-computenode-5.3.0-0-rhels-7.3-ppc64le were added to
osimage rh73-compute-stateless successfully

$ lsdef -t osimage rh73-compute-stateless -i kitcomponents
Object name: rh73-compute-stateless

kitcomponents=xlc.license-compute-13.1.5-0-rhels-7-ppc64le,xlc.rte-compute-13.1
.5-0-rhels-7-ppc64le,xlf.license-compute-15.1.5-0-rhels-7-ppc64le,xlf.rte-compu
te-15.1.5-0-rhels-7-ppc64le,ibm_spectrum_mpi_license-10.1.0.2-rh7-rhels-7-ppc64
le,ibm_spectrum_mpi-full-10.1.0.2-rh7-rhels-7-ppc64le,ppedev.license-2.3.0-0-rh
260 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

els-7.3-ppc64le,ppedev.compute-2.3.0-0-rhels-7.3-ppc64le,essl-license-5.5.0-0-r
hels-7.3-ppc64le,essl-computenode-5.5.0-0-rhels-7.3-ppc64le,pessl-license-5.3.0
-0-rhels-7.3-ppc64le,pessl-computenode-5.3.0-0-rhels-7.3-ppc64le

5.6.13 Spectrum Scale (formerly GPFS)

This section described how to install the packages for Spectrum Scale 4.2.x.0 and the
package updates for Spectrum Scale 4.2.x.3, and to build and install the GPFS Portability
Layer (GPL) packages.

The process to build the GPL requires a provisioned node (for example, compute, login, or
management node) with Spectrum Scale packages installed (specifically, gpfs.gpl).
Therefore, if the management node is not used to build the GPL, you cannot install Spectrum
Scale with the GPL (requirement) in a single provisioning stage for one of the nodes, which is
used to build the GPL. It is possible, afterward, provided the built GPL package is made
available for download in the management node (such as other Spectrum Scale packages)
for installation on other nodes.

For more information about the installation process, see the Installing GPFS on Linux nodes
page in the IBM Knowledge Center website. To install Spectrum Scale 4.2.x.3 (on top of
4.2.x.0), complete the following steps:

1. Install a script for environment configuration.
2. Install the packages for Spectrum Scale 4.2.1.0.
3. Install the packages for Spectrum Scale 4.2.1.3.
4. Build the GPL.

Installing a script for environment configuration
To install the script for environment configuration, complete the following steps:

1. Create a script to set the PATH environment variable:

$ script=/install/postscripts/gpfs-path

$ cat <<EOF >$script
#!/bin/bash

profile='/etc/profile.d/gpfs.sh'
echo 'export PATH=\$PATH:/usr/lpp/mmfs/bin' >\$profile
EOF

$ chmod +x $script

$ ls -l $script
-rwxr-xr-x 1 root root 99 Nov 30 17:24 /install/postscripts/gpfs-path

2. Include it in the postscripts list of the osimage object by using the chdef command:

$ lsdef -t osimage rh73-hpc-diskful -i postscripts
Object name: rh73-hpc-diskful

postscripts=nvidia-power-limit

$ chdef -t osimage rh73-hpc-diskful --plus postscripts='gpfs-path'
1 object definitions have been created or modified.

$ lsdef -t osimage rh73-hpc-diskful -i postscripts
Object name: rh73-hpc-diskful

postscripts=nvidia-power-limit,gpfs-path
Chapter 5. Node and software deployment 261

http://www.ibm.com/support/knowledgecenter/STXKQY_4.2.0/com.ibm.spectrum.scale.v4r2.ins.doc/bl1ins_loosein.htm
http://www.ibm.com/support/knowledgecenter/STXKQY_4.2.0/com.ibm.spectrum.scale.v4r2.ins.doc/bl1ins_loosein.htm

Installing the packages for Spectrum Scale 4.2.x.0
To install the packages, complete the following steps:

1. Extract the product packages of Spectrum Scale 4.2.x.0:

$ dir=/install/post/otherpkgs/rhels7.3/ppc64le/gpfs-4210
$ mkdir -p $dir

$ /path/to/Spectrum_Scale_install-4.2.1.0_ppc64le_standard --silent --dir $dir
<...>
Extracting Product RPMs to /install/post/otherpkgs/rhels7.3/ppc64le/gpfs-4210
<...>

2. Create the respective package repository by using the createrepo command:

$ createrepo $dir
<...>

$ ls -1 $dir
gpfs.base_4.2.1-0_ppc64el.deb
gpfs.base-4.2.1-0.ppc64le.rpm
gpfs.docs_4.2.1-0_all.deb
gpfs.docs-4.2.1-0.noarch.rpm
gpfs.ext_4.2.1-0_ppc64el.deb
gpfs.ext-4.2.1-0.ppc64le.rpm
gpfs.gpl_4.2.1-0_all.deb
gpfs.gpl-4.2.1-0.noarch.rpm
gpfs.gskit_8.0.50-40_ppc64el.deb
gpfs.gskit-8.0.50-40.ppc64le.rpm
gpfs.hadoop-2-connector-4.2.1-0.ppc64le.rpm
gpfs.msg.en-us_4.2.1-0_all.deb
gpfs.msg.en_US-4.2.1-0.noarch.rpm
license
manifest
repodata

3. Create the respective package list with a combination of commands:

$ list=/install/custom/rhels7.3/gpfs-4210.otherpkgs.pkglist

$ rpm -qip $dir/*.rpm | awk '/^Name/ { print $3 }' | sed "s:^:$(basename
$dir)/:" | grep -v hadoop >$list

$ cat $list
gpfs-4210/gpfs.base
gpfs-4210/gpfs.docs
gpfs-4210/gpfs.ext
gpfs-4210/gpfs.gpl
gpfs-4210/gpfs.gskit
gpfs-4210/gpfs.msg.en_US

4. Include the respective package list in the otherpkglist attribute of the osimage object by
using the chdef command:

$ chdef -t osimage rh73-hpc-diskful --plus otherpkglist=$list
1 object definitions have been created or modified.

$ lsdef -t osimage rh73-hpc-diskful -i otherpkglist
Object name: rh73-hpc-diskful
262 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

otherpkglist=/install/osimages/rh73-hpc-diskful/kits/KIT_DEPLOY_PARAMS.othe
rpkgs.pkglist,/install/osimages/rh73-hpc-diskful/kits/KIT_COMPONENTS.otherpkgs.
pkglist,/install/custom/rhels7.3/at8.0.otherpkgs.pkglist,/install/custom/rhels7
.3/gpfs-4210.otherpkgs.pkglist

Installing the packages for Spectrum Scale 4.2.x.3
To install the packages, complete the following steps:

1. Extract the product packages of Spectrum Scale 4.2.x.3:

$ dir=/install/post/otherpkgs/rhels7.3/ppc64le/gpfs-4213
$ mkdir -p $dir

$ /root/software/gpfs/Spectrum_Scale_Standard-4.2.1.3-ppc64LE-Linux-update
--silent --dir $dir
<...>
Product rpms successfully extracted to
/install/post/otherpkgs/rhels7.3/ppc64le/gpfs-4213

2. Create the respective package repository by using the createrepo command:

$ createrepo $dir
<...>

$ ls -1 $dir
gpfs.base_4.2.1-3_ppc64el_update.deb
gpfs.base-4.2.1-3.ppc64le.update.rpm
gpfs.docs_4.2.1-3_all.deb
gpfs.docs-4.2.1-3.noarch.rpm
gpfs.ext_4.2.1-3_ppc64el_update.deb
gpfs.ext-4.2.1-3.ppc64le.update.rpm
gpfs.gpl_4.2.1-3_all.deb
gpfs.gpl-4.2.1-3.noarch.rpm
gpfs.gskit_8.0.50-47_ppc64el.deb
gpfs.gskit-8.0.50-47.ppc64le.rpm
gpfs.hadoop-connector_2.7.0-2_ppc64el.deb
gpfs.hadoop-connector-2.7.0-2.ppc64le.rpm
gpfs.msg.en-us_4.2.1-3_all.deb
gpfs.msg.en_US-4.2.1-3.noarch.rpm
manifest
repodata

3. Create the respective package list with a combination of commands:

$ list=/install/custom/rhels7.3/gpfs-4213.otherpkgs.pkglist

$ echo '#NEW_INSTALL_LIST#' > $list
$ rpm -qip $dir/*.rpm | awk '/^Name/ { print $3 }' | sed "s:^:$(basename
$dir)/:" | grep -v hadoop >>$list

Note: Use the #NEW_INSTALL_LIST# directive to perform package installation of
Spectrum Scale 4.2.x.0 and 4.2.x.3 in different stages to ensure the update process
(from version 4.2.x.0 to version 4.2.x.3) occurs correctly.

For more information, see the xCAT File Format for .otherpkgs.pkglist File
documentation page.
Chapter 5. Node and software deployment 263

http://xcat-docs.readthedocs.org/en/latest/guides/admin-guides/manage_clusters/common/deployment/additionalpkg/nonubuntu_os_other_pkg.html#file-format-for-otherpkgs-pkglist-file

$ cat $list
#NEW_INSTALL_LIST#
gpfs-4213/gpfs.base
gpfs-4213/gpfs.docs
gpfs-4213/gpfs.ext
gpfs-4213/gpfs.gpl
gpfs-4213/gpfs.gskit
gpfs-4213/gpfs.msg.en_US

4. Include the respective package list in the otherpkglist attribute of the osimage object by
using the chdef command:

$ chdef -t osimage rh73-hpc-diskful --plus otherpkglist=$list
1 object definitions have been created or modified.

$ lsdef -t osimage rh73-hpc-diskful -i otherpkglist
Object name: rh73-hpc-diskful

otherpkglist=/install/osimages/rh73-hpc-diskful/kits/KIT_DEPLOY_PARAMS.othe
rpkgs.pkglist,/install/osimages/rh73-hpc-diskful/kits/KIT_COMPONENTS.otherpkgs.
pkglist,/install/custom/rhels7.3/at8.0.otherpkgs.pkglist,/install/custom/rhels7
.3/gpfs-4210.otherpkgs.pkglist,/install/custom/rhels7.3/gpfs-4213.otherpkgs.pkg
list

Building the GPL
The process to build the GPL requires a working node (for example, a management, login, or
compute node) with Spectrum Scale packages (specifically, gpfs.gpl) installed.

The node must be capable of building out-of-tree kernel modules (that is, with development
packages, such as gcc, make, and kernel-devel installed), and run the same kernel packages
version and processor architecture as the target compute nodes for the GPL produced
binaries.

For example, you can build the GPL in the management node or an installed compute node (if
any), if it is a system based on POWER8 that is running RHEL Server 7.3 for ppc64le, and
matches the kernel packages version of the target compute nodes. This section describes the
build process with an installed compute node.

To perform the GPL build, complete the following steps:

1. Verify the Spectrum Scale installation (PATH environment variable and RPM packages):

$ xdsh p8r2n2 'echo $PATH' | grep mmfs
p8r2n2: /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/usr/lpp/mmfs/bin:
/opt/ibutils/bin

$ xdsh p8r2n2 'rpm -qa | grep ^gpfs'
p8r2n2: gpfs.msg.en_US-4.2.1-3.noarch
p8r2n2: gpfs.gpl-4.2.1-3.noarch
p8r2n2: gpfs.gskit-8.0.50-47.ppc64le
p8r2n2: gpfs.docs-4.2.1-3.noarch
p8r2n2: gpfs.ext-4.2.1-3.ppc64le
p8r2n2: gpfs.base-4.2.1-3.ppc64le

Note: The GPL must be rebuilt and reinstalled if the kernel packages are updated. This
process requires the kernel-devel package for the respective update version.
264 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

2. Build the GPL.

Verify that the build process writes the resulting GPL binary RPM package
(gpfs.gplbin-<kernel version>.<architecture>-<spectrum scale version>.rpm), and
finishes with an exit code of zero (success):

$ xdsh p8r2n2 --stream 'cd /usr/lpp/mmfs/src && make Autoconfig && make World
&& make InstallImages && make rpm'
<...>
p8r2n2: Verifying that tools to build the portability layer exist....
p8r2n2: cpp present
p8r2n2: gcc present
p8r2n2: g++ present
p8r2n2: ld present
<...>
p8r2n2: Wrote:
/root/rpmbuild/RPMS/ppc64le/gpfs.gplbin-3.10.0-327.el7.ppc64le-4.2.1-3.ppc64le.
rpm
<...>
p8r2n2: + exit 0

3. Copy the package and create the respective package repository with the createrepo
command:

$ dir=/install/post/otherpkgs/rhels7.3/ppc64le/gpfs-gpl
$ mkdir -p $dir

$ scp p8r2n2:/root/rpmbuild/RPMS/ppc64le/gpfs.gplbin-*.rpm $dir
gpfs.gplbin-3.10.0-327.el7.ppc64le-4.1.1-3.ppc64le.rpm <...>

$ createrepo $dir
<...>

$ ls -1 $dir
gpfs.gplbin-3.10.0-327.el7.ppc64le-4.2.1-3.ppc64le.rpm
repodata

4. Create the respective package list by using the following commands:

$ list=/install/custom/rhels7.3/gpfs-gpl.otherpkgs.pkglist

$ echo '#NEW_INSTALL_LIST#' >$list
$ rpm -qip $dir/*.rpm | awk '/^Name/ { print $3 }' | sed "s:^:$(basename
$dir)/:" >>$list

$ cat $list
#NEW_INSTALL_LIST#
gpfs-gpl/gpfs.gplbin-3.10.0-327.el7.ppc64le

5. Include the respective package list in the otherpkglist attribute of the osimage object by
using the chdef command.

This step allows the GPL package to be installed automatically (without rebuild steps)
during the provisioning stage of other nodes:

$ chdef -t osimage rh73-hpc-diskful --plus otherpkglist=$list
1 object definitions have been created or modified.

$ lsdef -t osimage rh73-hpc-diskful -i otherpkglist
Object name: rh73-hpc-diskful
Chapter 5. Node and software deployment 265

otherpkglist=/install/osimages/rh73-hpc-diskful/kits/KIT_DEPLOY_PARAMS.othe
rpkgs.pkglist,/install/osimages/rh73-hpc-diskful/kits/KIT_COMPONENTS.otherpkgs.
pkglist,/install/custom/rhels7.3/at8.0.otherpkgs.pkglist,/install/custom/rhels7
.3/gpfs-4210.otherpkgs.pkglist,/install/custom/rhels7.3/gpfs-4213.otherpkgs.pkg
list,/install/custom/rhels7.3/gpfs-gpl.otherpkgs.pkglist

For more information about configuration and usage, see the Steps to establishing and
starting your GPFS cluster page at the IBM Knowledge Center website.

5.6.14 IBM Spectrum LSF

This section describes how to install, update, and enable Spectrum LSF (formerly Platform
LSF) on the compute nodes, and to configure some features. The Spectrum LSF installation
and the user applications (which is run by using jobs) must be available on a parallel file
system for all nodes to concurrently access the same code and data correctly. For the
scenario that is described in this section, a Spectrum Scale file system is available at
/gpfs/gpfs_fs0.

The process consists of installing and updating Spectrum LSF in one node (that is, only
once), and then enabling it on all nodes. The installation or update is only required in one
node because it is available in the parallel file system accessible by all nodes. However, the
enablement is required on all nodes because it performs configuration steps and enables
startup services.

Therefore, the process to install or update Spectrum LSF requires a provisioned node (for
example, a compute or login node) with access to the parallel file system that is available to
the other nodes. It is not possible to install and enable Spectrum LSF in a single provisioning
stage for one of the nodes, which is used to install Spectrum LSF to the parallel file system. It
is possible afterward if it is installed and available in the parallel file system for access by
other nodes, which must enable only Spectrum LSF and be added to the Spectrum LSF
cluster. The option with single provisioning stage is not covered in this section, which still
requires enabling Spectrum LSF and adding the nodes to the cluster manually.

To install Spectrum LSF, complete the following steps:

1. Install Spectrum LSF.
2. Update Spectrum LSF.
3. Enable Spectrum LSF.
4. Add nodes.
5. Configure extra HPC and IBM PE support features.
6. Configure GPU support features.

Note: You can install the GPL in an installed and running compute node by using the
otherpkgs script of the updatenode command:

$ updatenode p8r3n3 -P otherpkgs
<...>
p8r3n3: pkgsarray: gpfs-gpl/gpfs.gplbin-3.10.0-327.el7.ppc64le, 2
<...>

$ xdsh p8r3n3 'rpm -qa | grep ^gpfs.gpl'
p8r3n3: gpfs.gpl-4.2.1-3.noarch
p8r3n3: gpfs.gplbin-3.10.0-327.el7.ppc64le-4.1.1-3.ppc64le
266 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.ibm.com/support/knowledgecenter/STXKQY_4.2.0/com.ibm.spectrum.scale.v4r2.ins.doc/bl1ins_estart.htm
http://www.ibm.com/support/knowledgecenter/STXKQY_4.2.0/com.ibm.spectrum.scale.v4r2.ins.doc/bl1ins_estart.htm

Installing Spectrum LSF
Complete the following steps on the management node, targeting a provisioned compute
node (for example, p8r1n1, defined as lsf_master):

1. Create the directories for the installation and distribution directories of Spectrum LSF to be
mounted from a Spectrum Scale file system (for example, /gpfs/gpfs_fs0):

$ gpfs_dir='/gpfs/gpfs_fs0/lsf'
$ gpfs_top="$gpfs_dir/top"
$ gpfs_distrib="$gpfs_dir/distrib"

$ lsf_top='/usr/share/lsf'
$ lsf_distrib='/usr/share/lsf_distrib'

$ lsf_master='p8r1n1'

$ xdsh $lsf_master "mkdir -p $lsf_top $gpfs_top && echo '$gpfs_top $lsf_top
none defaults,bind 0 0' >>/etc/fstab && mount -v $lsf_top"
p8r1n1: mount: /gpfs/gpfs_fs0/lsf/top bound on /usr/share/lsf.

$ xdsh $lsf_master "mkdir -p $lsf_distrib $gpfs_distrib && echo '$gpfs_distrib
$lsf_distrib none defaults,bind 0 0' >>/etc/fstab && mount -v $lsf_distrib"
p8r1n1: mount: /gpfs/gpfs_fs0/lsf/distrib bound on /usr/share/lsf_distrib.

2. Copy the installation tarballs and the entitlement file to the distribution directory:

$ cd /path/to/lsf-install-files

$ ls -1
lsf9.1.3_lnx310-lib217-ppc64le.tar.Z
lsf9.1.3_lsfinstall_linux_ppc64le.tar.Z
lsf.entitlement

$ scp \
lsf9.1.3_lsfinstall_linux_ppc64le.tar.Z \
lsf9.1.3_lnx310-lib217-ppc64le.tar.Z \
lsf.entitlement \
$lsf_master:$lsf_distrib

lsf9.1.3_lsfinstall_linux_ppc64le.tar.Z
100% 116MB 58.2MB/s 00:02
lsf9.1.3_lnx310-lib217-ppc64le.tar.Z
100% 228MB 76.1MB/s 00:03
lsf.entitlement
100% 167 0.2KB/s 00:00

Verify the files are present in the correct directory:

$ ssh $lsf_master "cd $lsf_distrib; pwd; ls -1"
/usr/share/lsf_distrib
lsf9.1.3_lnx310-lib217-ppc64le.tar.Z
lsf9.1.3_lsfinstall_linux_ppc64le.tar.Z
lsf.entitlement

3. Create the administrator user for Spectrum LSF:

$ lsf_username='lsfadmin'
$ lsf_password='<password>'

$ xdsh $lsf_master "useradd -m -s /bin/bash $lsf_username && echo
"$lsf_username:$lsf_password" | chpasswd; su -l $lsf_username -c whoami"
Chapter 5. Node and software deployment 267

p8r1n1: lsfadmin

$ xdsh $lsf_master "su -l $lsf_username -c 'cat ~/.profile >> ~/.bash_profile'"

4. Create the configuration file for the installation (install.config). It must be placed in the
same directory as the install_lsf and lsf_startup scripts.

The following configuration is used for the scenario in this chapter:

– Top directory: /usr/share/lsf
– Distribution directory: /usr/share/lsf_distrib
– Entitlement file: lsf.entitlement (in the distribution directory)
– Administrator username: lsfadmin
– Cluster name: lsf-cluster
– Master/server nodes: p8r1n1 (that is, $lsf_master)
– Non-master/server nodes: None at this time

$ lsf_cluster='lsf-cluster'
$ lsf_entitlement="$lsf_distrib/lsf.entitlement"

$ cat <<EOF >/install/postscripts/install.config
LSF_TOP="$lsf_top"
LSF_TARDIR="$lsf_distrib"
LSF_ENTITLEMENT_FILE="$lsf_entitlement"
LSF_ADMINS="$lsf_username"
LSF_CLUSTER_NAME="$lsf_cluster"
LSF_MASTER_LIST="$lsf_master"
LSF_ADD_SERVERS=""
EOF

5. Verify that the file contents are correct:

$ cat /install/postscripts/install.config
LSF_TOP="/usr/share/lsf"
LSF_TARDIR="/usr/share/lsf_distrib"
LSF_ENTITLEMENT_FILE="/usr/share/lsf_distrib/lsf.entitlement"
LSF_ADMINS="lsfadmin"
LSF_CLUSTER_NAME="lsf-cluster"
LSF_MASTER_LIST="p8r1n1"
LSF_ADD_SERVERS=""

6. Include the ed package in the package list:

$ lsdef -t osimage rh73-hpc-diskful -i pkglist
Object name: rh73-hpc-diskful

pkglist=/install/custom/install/rh/rh73-hpc.pkglist

$ list=/install/custom/install/rh/rh73-hpc.pkglist

$ cat <<EOF >>$list

Spectrum LSF
ed
EOF

7. Verify that the package list is correct:

$ cat $list
RHEL Server 7.2 (original pkglist)
268 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

#INCLUDE:/opt/xcat/share/xcat/install/rh/compute.rhels7.pkglist#

CUDA Toolkit 7.5 for RHEL 7.2 (original pkglist)
#INCLUDE:/opt/xcat/share/xcat/install/rh/cudafull.rhels7.ppc64le.pkglist#

Infiniband with Mellanox OFED for RHEL 7.2 (original pkglist)
createrepo
#INCLUDE:/opt/xcat/share/xcat/ib/netboot/rh/ib.rhels7.ppc64le.pkglist#

PE RTE IVP
ksh

Spectrum LSF
ed

8. Install the packages from the pkglist attribute by using the ospkgs script for the
updatenode command:

$ updatenode $lsf_master --scripts ospkgs
p8r1n1: xcatdsklspost: downloaded postscripts successfully
p8r1n1: <...> Running postscript: ospkgs
<...>
p8r1n1: Postscript: ospkgs exited with code 0
p8r1n1: Running of postscripts has completed.

9. Verify that the ed command is available:

$ xdsh $lsf_master 'ed --version | head -n1'
p8r1n1: GNU Ed 1.9

10.Install Spectrum LSF on the node by using the install_lsf script for the updatenode
command.

11.Verify that the exit code of the script is zero (success).

$ updatenode $lsf_master --scripts install_lsf
p8r1n1: xcatdsklspost: downloaded postscripts successfully
p8r1n1: <...> Running postscript: install_lsf
<...>
p8r1n1: INFO: Installation script DONE.
p8r1n1: INFO: Updating LSF Cluster Configuration Files lsf.conf and lsb.hosts
p8r1n1: Postscript: install_lsf exited with code 0
p8r1n1: Running of postscripts has completed.

Updating Spectrum LSF
Several updates are available for Spectrum LSF in the form of fixes (or patches).

Note: If the ed command is not available, the following error can occur:

$ updatenode $lsf_master --scripts install_lsf
<...>
p8r1n1: ERROR: Fail to install LSF. Check Install.log and Install.err in
/usr/share/lsf_distrib/lsf9.1.3_lsfinstall.
<...>

$ xdsh $lsf_master "cat /usr/share/lsf_distrib/*/Install.err"
<...>
p8r1n1: Cannot find UNIX command " ed".
<...>
Chapter 5. Node and software deployment 269

For more information about applying fixes to Spectrum LSF, see the Manage cluster patches
and versions on UNIX and Linux page of the IBM Knowledge Center website.

To download and apply fixes for Spectrum LSF, complete the following steps:

1. Download the fixes:

a. Go to the IBM Support website.

b. In Product Finder field, enter LSF.

c. In the results list, select LSF 9.1.3.

d. Under Downloads, select Downloads (fixes & PTFs).

A window opens (title: Refine my fix list; subtitle: LSF 9.1.3).

e. In Version fix level, select 9.1.3.

f. In Filter by operating system, select Linux Power PC 64 Little Endian.

g. Click Continue.

The list of fixes is shown, and more information is available in Show fix details. For
example, the following information is shown at the time of this writing):

• Interim fix: lsf-9.1.3-build347817

Abstract: P101215. Fix to enhance NVIDIA GPU integration with LSF 9.1.3 in Linux
x64 environment. LSF makes use of the cgroup device subsystem to enforce the
GPU in this patch. LSF can disable auto boost for the job with exclusive
thread/process multi-GPU requirements. LSF can power off the GPU if it is not in
use.

• Interim fix: lsf-9.1.3-build368515

Abstract: P101357. This fix updates the lsb_readjobinfo API to set a job.

• Fix pack: lsf-9.1.3.3-spk-2015-Jun-build346694

Abstract: LSF Version 9.1.3 Fix Pack 3. This Fix Pack includes all fixed issues
and solutions that are included in previous LSF Version 9.1.3 Fix Packs and
addresses new issues and solutions from February 1, 2015 - June 8, 2015. For
more information about the issues and solutions in this Fix Pack, see the LSF 9.1.3
Fix Pack 3 Fixed Bugs List (lsf9.1.3.3_fixed_bugs.pdf).

• Interim fix: lsf-9.1.3-build362511

Abstract: P101353. Fix to ensure launch job run successfully over 32 nodes.

h. In the results list, select the wanted fixes, and click Continue. Usually, all of the fixes
are suggested for the general case.

i. Proceed with the sign-in process.

j. Select a download option (for example, HTTPS).

k. Copy the download link of each file (for HTTPS; for other methods, follow the
instructions that are provided at the website) or download the files and transfer to the
wanted node later.

2. Apply the fixes.

Perform the following commands in one of the nodes with access to the parallel file system
with the Spectrum LSF installation (for example, open an SSH connection to p8r1n1):

a. Go to the patch installation directory:

$ patch_dir=/usr/share/lsf/9.1/install/patches/
$ mkdir -p $patch_dir
$ cd $patch_dir
270 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_unix_install/lsf_patch_version_manage.dita
http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_unix_install/lsf_patch_version_manage.dita
http://ibm.com/support
http://ibm.com/support

b. Download (or copy) one or more fixes.

You can use the following download links:

$ curl -sOL https://<...>/lsf9.1.3_linux3.10-glibc2.17-ppc64le-347817.tar.Z
$ curl -sOL https://<...>/lsf9.1.3_linux3.10-glibc2.17-ppc64le-368515.tar.Z
$ curl -sOL https://<...>/lsf9.1.3_lnx310-lib217-ppc64le-346694.tar.Z
$ curl -sOL https://<...>/lsf9.1.3_linux3.10-glibc2.17-ppc64le-362511.tar.Z

$ ls -1
lsf9.1.3_linux3.10-glibc2.17-ppc64le-347817.tar.Z
lsf9.1.3_linux3.10-glibc2.17-ppc64le-362511.tar.Z
lsf9.1.3_linux3.10-glibc2.17-ppc64le-368515.tar.Z
lsf9.1.3_lnx310-lib217-ppc64le-346694.tar.Z

c. Run the patchinstall command on the fixes:

$../patchinstall *-362511.* *-346694.* *-368515.* *-347817.*
<...>
Installing package
"/usr/share/lsf/9.1/install/patches/lsf9.1.3_linux3.10-glibc2.17-ppc64le-362
511.tar.Z"...
<...>
Are you sure you want to update your cluster with this patch? (y/n) [y]
<...>
Done installing
/usr/share/lsf/9.1/install/patches/lsf9.1.3_linux3.10-glibc2.17-ppc64le-3625
11.tar.Z.
<...>
Installing package
"/usr/share/lsf/9.1/install/patches/lsf9.1.3_lnx310-lib217-ppc64le-346694.ta
r.Z"...
<...>
Are you sure you want to update your cluster with this patch? (y/n) [y]
<...>
Done installing
/usr/share/lsf/9.1/install/patches/lsf9.1.3_lnx310-lib217-ppc64le-346694.tar
.Z.
<...>
Installing package
"/usr/share/lsf/9.1/install/patches/lsf9.1.3_linux3.10-glibc2.17-ppc64le-368
515.tar.Z"...
<...>
Are you sure you want to update your cluster with this patch? (y/n) [y]
<...>
Done installing
/usr/share/lsf/9.1/install/patches/lsf9.1.3_linux3.10-glibc2.17-ppc64le-3685
15.tar.Z.
<...>
Installing package
"/usr/share/lsf/9.1/install/patches/lsf9.1.3_linux3.10-glibc2.17-ppc64le-347
817.tar.Z"...
<...>
Are you sure you want to update your cluster with this patch? (y/n) [y]
<...>

Done installing
/usr/share/lsf/9.1/install/patches/lsf9.1.3_linux3.10-glibc2.17-ppc64le-3478
17.tar.Z.
Chapter 5. Node and software deployment 271

This patch has updated binaries or library files that affect running
daemons.
To make the changes take effect, you must restart your cluster.

Exiting...

d. Verify the installed fixes by using the pversions command:

$ /usr/share/lsf/9.1/install/pversions

IBM Platform LSF 9.1.3

 binary type: linux3.10-glibc2.17-ppc64le, Apr 01 2015, Build 335772
 installed: Nov 30 2015
 patched: Fix P101353, build 362511, installed Dec 01 2015
 Fix , build 346694, installed Dec 01 2015
 Fix P101357, build 368515, installed Dec 01 2015
 Fix P101215, build 347817, installed Dec 01 2015

e. Restart several services in the master node:

$ lsadmin limrestart all
<...>
Do you really want to restart LIMs on all hosts? [y/n] y
<...>

$ lsadmin resrestart all
Do you really want to restart RES on all hosts? [y/n] y
<...>

$ badmin hrestart all
<...>
Restart slave batch daemon on all the hosts? [y/n] y
<...>

$ badmin mbdrestart
<...>
Do you want to restart MBD? [y/n] y
<...>

Enabling Spectrum LSF
Complete the following steps on the management node and target all compute nodes:

1. Modify the lsf_startup script to correctly find the Spectrum LSF version that is based on
its installation path (this modification is done only once, in the management node):

a. Create a copy of the original script:

$ cp -a /install/postscripts/lsf_startup
/install/postscripts/lsf_startup.bkp

b. Modify the script by using the following expression to the sed command. The
expression is a single, long line (without line breaks):

$ sed \
'/^LSF_VERSION=/ a LSF_VERSION="$(find /$LSF_TOP -path "*/install/hostsetup"

Note: This issue is expected to be resolved in a future xCAT version (xCAT issue #495).
272 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

| grep -o "/[^/]\\+/install/hostsetup" | cut -d/ -f2)"' \
-i /install/postscripts/lsf_startup

c. Verify the differences between the original and the modified scripts:

$ diff /install/postscripts/lsf_startup.bkp /install/postscripts/lsf_startup
34a35
> LSF_VERSION="$(find /$LSF_TOP -path "*/install/hostsetup" | grep -o
"/[^/]\+/install/hostsetup" | cut -d/ -f2)"

2. Run the lsf_startup script in the nodes by using the updatenode command (see
Example 5-20).

You can use a node group (for example, s822lc) instead of the $lsf_master variable after
the nodes in the group are online.

Verify that the exit code of the script is zero (success):

Example 5-20 Running the lsf_startup script with the updatenode command

$ updatenode $lsf_master --scripts lsf_startup
p8r1n1: xcatdsklspost: downloaded postscripts successfully
p8r1n1: <...> Running postscript: lsf_startup
p8r1n1: INFO: Run hostsetup on each node.
p8r1n1: Logging installation sequence in /usr/share/lsf/log/Install.log
p8r1n1:
p8r1n1: --
p8r1n1: L S F H O S T S E T U P U T I L I T Y
p8r1n1: --
p8r1n1: This script sets up local host (LSF server, client, or slave)
environment.
p8r1n1: Setting up LSF server host "p8r1n1" ...
p8r1n1: Checking LSF installation for host "p8r1n1.xcat-cluster" ... Done
p8r1n1: Installing LSF RC scripts on host "p8r1n1.xcat-cluster" ... Done
p8r1n1: LSF service ports are defined in /usr/share/lsf/conf/lsf.conf.
p8r1n1: Checking LSF service ports definition on host "p8r1n1.xcat-cluster" ...
Done
p8r1n1: You are installing IBM Platform LSF - Standard Edition.
p8r1n1:
p8r1n1: ... Setting up LSF server host "p8r1n1" is done
p8r1n1: ... LSF host setup is done.
p8r1n1: INFO: Set LSF environment for root and LSF_ADMINS
p8r1n1: INFO: Start LSF Cluster.
p8r1n1: Starting up LIM on <p8r1n1> done
p8r1n1: Starting up RES on <p8r1n1> done
p8r1n1: Starting up slave batch daemon on <p8r1n1> done
p8r1n1: Postscript: lsf_startup exited with code 0
p8r1n1: Running of postscripts has completed.

3. Verify that the Spectrum LSF commands are available for the LSF administrator user, and
that the cluster is listed by using the lsclusters command:

$ xdsh $lsf_master "su -l $lsf_username -c lsclusters"
p8r1n1: CLUSTER_NAME STATUS MASTER_HOST ADMIN HOSTS SERVERS
p8r1n1: lsf-cluster ok p8r1n1 lsfadmin 1 1
Chapter 5. Node and software deployment 273

Adding nodes
To add nodes to the cluster, complete the following steps on the management node, targeting
a provisioned compute node (for example, p8r3n2, defined as lsf_node). For more
information, see the Adding a host page of the IBM Knowledge Center website:

1. Create the directories for the installation and distribution directories of Spectrum LSF to be
mounted from a Spectrum Scale file system (for example, /gpfs/gpfs_fs0):

$ gpfs_dir='/gpfs/gpfs_fs0/lsf' # then /top and /distrib
$ gpfs_top="$gpfs_dir/top"
$ gpfs_distrib="$gpfs_dir/distrib"

$ lsf_top='/usr/share/lsf'
$ lsf_distrib='/usr/share/lsf_distrib'

$ lsf_node='p8r3n2'

$ xdsh $lsf_node "mkdir -p $lsf_top $gpfs_top && echo '$gpfs_top $lsf_top none
defaults,bind 0 0' >>/etc/fstab && mount -v $lsf_top"
p8r3n2: mount: /gpfs/gpfs_fs0/lsf/top bound on /usr/share/lsf.

$ xdsh $lsf_node "mkdir -p $lsf_distrib $gpfs_distrib && echo '$gpfs_distrib
$lsf_distrib none defaults,bind 0 0' >>/etc/fstab && mount -v $lsf_distrib"
p8r3n2: mount: /gpfs/gpfs_fs0/lsf/distrib bound on /usr/share/lsf_distrib.

2. Add the node to the lsf.cluster.<cluster-name> file.

You can edit the file from any node that can access the parallel file system with the
Spectrum LSF installation directory.

You can add a line for the new node (p8r3n2) based on an existing node (p8r2n2), for
example:

$ vi /usr/share/lsf/conf/lsf.cluster.lsf-cluster
<...>
Begin Host
HOSTNAME model type server r1m mem swp RESOURCES #Keywords
<...>
p8r1n1 ! ! 1 3.5 () () (mg)
p8r3n2 ! ! 1 3.5 () () (mg)
End Host

3. Restart the services on a master node (for example, p8r1n1):

<management-node> $ lsf_master=p8r1n1
<management-node> $ ssh $lsf_master

<master-node> $ su lsfadmin

<master-node> $ lsadmin reconfig

Checking configuration files ...
No errors found.

Restart only the master candidate hosts? [y/n] y
Restart LIM on <p8r1n1> done

<master-node> $ badmin mbdrestart

Checking configuration files ...
274 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_admin/host_add_lsf.dita

There are warning errors.

Do you want to see detailed messages? [y/n] y
Checking configuration files ...
<...>

No fatal errors found.
<...>
Do you want to restart MBD? [y/n] y
MBD restart initiated

Verify the new node is listed by the lshosts command (with no hardware details yet):

<master-node> $ lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
p8r1n1 LINUXPP POWER8 250.0 160 256G 3.9G Yes (mg)
p8r3n2 UNKNOWN UNKNOWN_ 1.0 - - - Yes (mg)

4. Create the administrator user for Spectrum LSF:

$ lsf_username='lsfadmin'
$ lsf_password='<password>'

$ xdsh $lsf_node "useradd -m -s /bin/bash $lsf_username && echo
"$lsf_username:$lsf_password" | chpasswd; su -l $lsf_username -c whoami"
p8r3n2: lsfadmin

$ xdsh $lsf_node "su -l $lsf_username -c 'cat ~/.profile >> ~/.bash_profile'"

5. Run the lsf_startup script in the nodes by using the updatenode command:

$ updatenode $lsf_node --scripts lsf_startup

6. Start the services on the node (you can reboot the node, instead):

$ xdsh $lsf_node "su -l $lsf_username -c 'lsadmin limstartup' "
p8r3n2: Starting up LIM on <p8r3n2> done

$ xdsh $lsf_node "su -l $lsf_username -c 'lsadmin resstartup' "
p8r3n2: Starting up RES on <p8r3n2> done

$ xdsh $lsf_node "su -l $lsf_username -c 'badmin hstartup' "
p8r3n2: Starting up slave batch daemon on <p8r3n2> done

7. Verify that the new node is listed by running the lshosts command (with hardware details
now):

$ lsf_master=p8r1n1

$ xdsh $lsf_master "su -l $lsf_username -c lshosts"
p8r1n1: HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
p8r1n1: p8r1n1 LINUXPP POWER8 250.0 160 256G 3.9G Yes (mg)
p8r1n1: p8r3n2 LINUXPP POWER8 250.0 160 256G 3.9G Yes (mg)
Chapter 5. Node and software deployment 275

Configuring extra HPC and IBM PE support features
When Spectrum LSF is installed, you can set the CONFIGURATION_TEMPLATE property on
install.config file to use one of the following configuration templates:

� DEFAULT: Used for mixed type of work loads. Although it provides good performance
overall, it is not tuned for any specific type of cluster.

� PARALLEL: Adds extra support to large parallel jobs, including specific configurations to IBM
Parallel Environment (PE).

� HIGH_THROUGHPUT: Tunes for high throughput (high rate of mainly short jobs).

As an alternative, you can use DEFAULT template, but then configure it manually according to
your needs. For example, the following configuration tasks enable the cluster as it was
installed with a PARALLEL template. As the Spectrum LSF administrator user, complete the
following steps:

1. Edit the lsf.shared configuration file to add following resources in the Resource section:

ibmmpi Boolean () () (IBM POE MPI)
adapter_windows Numeric 30 N (free adapter windows on css0 on IBM SP)
nrt_windows Numeric 30 N (The number of free nrt windows on IBM
systems)
poe Numeric 30 N (poe availability)
css0 Numeric 30 N (free adapter windows on css0 on IBM SP)
csss Numeric 30 N (free adapter windows on csss on IBM SP)
dedicated_tasks Numeric () Y (running dedicated tasks)
ip_tasks Numeric () Y (running IP tasks)
us_tasks Numeric () Y (running US tasks)

2. Map out new resources on the lsf.cluster.<cluster_name> configuration file, in the
ResourceMap section:

poe [default]
adapter_windows [default]
nrt_windows [default]
dedicated_tasks (0@[default])
ip_tasks (0@[default])
us_tasks (0@[default])

3. Reconfigure and restart LIM daemons:

$ lsadmin reconfig

4. Configure reservation usage of adapter and nrt windows in the lsb.resources
configuration file. In the ReservationUsage section:

Begin ReservationUsage
RESOURCE METHOD
adapter_windows PER_TASK
nrt_windows PER_TASK
End ReservationUsage

5. (Optional) Create a queue for PE jobs in the lsb.queues configuration file. The following
sample includes the hpc_ibm and hpc_ibm_tv queues:

Begin Queue
QUEUE_NAME = hpc_ibm
PRIORITY = 30
NICE = 20
#RUN_WINDOW = 5:19:00-1:8:30 20:00-8:30
#r1m = 0.7/2.0 # loadSched/loadStop
#r15m = 1.0/2.5
276 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

#pg = 4.0/8
#ut = 0.2
#io = 50/240
#CPULIMIT = 180/hostA # 3 hours of host hostA
#FILELIMIT = 20000
#DATALIMIT = 20000 # jobs data segment limit
#CORELIMIT = 20000
#TASKLIMIT = 5 # job processor limitEnd of change
#USERS = all # users who can submit jobs to this queue
#HOSTS = all # hosts on which jobs in this queue can run
#PRE_EXEC = /usr/local/lsf/misc/testq_pre >> /tmp/pre.out
#POST_EXEC = /usr/local/lsf/misc/testq_post |grep -v Hey
RES_REQ = select[poe > 0]
EXCLUSIVE = Y
REQUEUE_EXIT_VALUES = 133 134 135
DESCRIPTION = IBM Platform LSF 9.1 for IBM. This queue is to run POE jobs
ONLY.
End Queue

Begin Queue
QUEUE_NAME = hpc_ibm_tv
PRIORITY = 30
NICE = 20
#RUN_WINDOW = 5:19:00-1:8:30 20:00-8:30
#r1m = 0.7/2.0 # loadSched/loadStop
#r15m = 1.0/2.5
#pg = 4.0/8
#ut = 0.2
#io = 50/240
#CPULIMIT = 180/hostA # 3 hours of host hostA
#FILELIMIT = 20000
#DATALIMIT = 20000 # jobs data segment limit
#CORELIMIT = 20000
#TASKLIMIT = 5 # job processor limitEnd of change
#USERS = all # users who can submit jobs to this queue
#HOSTS = all # hosts on which jobs in this queue can run
#PRE_EXEC = /usr/local/lsf/misc/testq_pre >> /tmp/pre.out
#POST_EXEC = /usr/local/lsf/misc/testq_post |grep -v Hey
RES_REQ = select[poe > 0]
REQUEUE_EXIT_VALUES = 133 134 135
TERMINATE_WHEN = LOAD PREEMPT WINDOW
RERUNNABLE = NO
INTERACTIVE = NO
DESCRIPTION = IBM Platform LSF 9.1 for IBM debug queue. This queue is to run
POE jobs ONLY.
End Queue

6. Reconfigure and restart batch daemons:

$ badmin reconfig

For more information about this configuration, see the Spectrum LSF manuals that are
available at the Enable LSF HPC Features page of the IBM Knowledge Center website.
Chapter 5. Node and software deployment 277

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_unix_install/lsfinstall_about.dita

Configuring GPU support features
Spectrum LSF can be configured to manage graphics processing unit (GPU) resources so
that they can be used on areas, such as monitoring, requirement expressions, and usage
reservation on job submission.

The following resources are made available as external load indexes by the elim.gpu
External Load Information Manager (ELIM) program:

� ngpus: Total number of GPUs.
� ngpus_shared: Number of GPUs in share mode.
� ngpus_excl_t: Number of GPUs in exclusive thread mode.
� ngpus_excl_p: Number of GPUs in exclusive process mode.

Before you proceed with configuration to export those resources, verify that the elim.gpu
program is deployed on the directory that is pointed to by the LSF_SERVERDIR environment
variable. This process is automatically started by the LIM daemon and can be checked by
using following command:

$ ps -aux | grep elim.gpu

Complete the following steps to configure Spectrum LSF:

1. Edit the lsf.shared configuration file to add the following resources in the Resource
section:

ngpus Numeric 60 N (Number of GPUs)
ngpus_shared Numeric 60 N (Number of GPUs in Shared Mode)
ngpus_excl_t Numeric 60 N (Number of GPUs in Exclusive Thread Mode)
ngpus_excl_p Numeric 60 N (Number of GPUs in Exclusive Process
Mode)

2. Map out new resources in the lsf.cluster.<cluster_name> configuration file in the
ResourceMap section:

ngpus ([default])
ngpus_shared ([default])
ngpus_excl_t ([default])
ngpus_excl_p ([default])

3. Enable reservation usage of those resources in the lsb.resources configuration file and in
the ReservationUsage section:

ngpus_shared PER_HOST N
ngpus_excl_t PER_HOST N
ngpus_excl_p PER_HOST N

4. Reconfigure and restart LIM and the batch daemons:

$ lsadmin reconfig
$ badmin reconfig

5. Confirm whether LIM now collects the information about GPUs:

$ lshosts -l

The process that is used to make other GPU-specific resources that are made available by
the elim.gpu.ext and elim.gpu.topology elim programs is not described in this section. For
more information about this configuration process, see the Define GPU resources page of the
IBM Knowledge Center website.
278 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.ibm.com/support/knowledgecenter/SSETD4_9.1.3/lsf_admin/define_gpu_resources.dita

5.6.15 Synchronize configuration files

It is recommended to add all configuration files to your osimage synclists definition.
Therefore, all files are up-to-date and in sync across all nodes and images. When you
generate or regenerate a stateless image or install a stateful image, the syncfiles are
updated. You also can force the syncfile process by using the updatenode <node> -F
command.

For more information, see the Synchronizing Files xCAT documentation page.

This example shows the synchronization of /etc/hosts to reduce host name and IP
resolution time.

Complete the following steps:

1. Create required folders:

$ syncdir=/install/custom/syncfiles/common
$ mkdir -p $syncdir

$ cd $syncdir
$ mkdir etc
$ cd etc

2. Create the hosts file (link to /etc/hosts in this case):

$ ln -s /etc/hosts hosts
$ pwd
/install/custom/syncfiles/common/etc
$ ls -l
lrwxrwxrwx 1 root root 10 1. Dez 15:24 hosts -> /etc/hosts

3. Create the synclist file:

$ synclist=/install/custom/netboot/rhel/rh73-compute.synclist

$ echo "/install/custom/syncfiles/common/etc/* -> /etc/" >> $synclist

$ cat $synclist
/install/custom/syncfiles/common/etc/* -> /etc/

4. Add the synclist to the osimage definition:

$ lsdef -t osimage rh73-compute-stateless -i synclists
Object name: rh73-compute-stateless
 synclists=

Note: If Service nodes are used to manage you nodes (hierarchy), you should ensure that
the service nodes were synchronized with the latest files from the Management Node
before installing.

If you have a group of compute nodes (compute) that are going to be installed that are
serviced by a service node, run the updatenode compute -f command before the
installation to synchronize the current files to the service node. The node range is the
compute node names and updatenode will determine which service nodes need updating.

Note: For more information about the synclist file syntax, see the The Format of synclist
file page of the xCAT documentation website.
Chapter 5. Node and software deployment 279

https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskful/customize_image/syncfile.html
https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/common/deployment/syncfile/syncfile_synclist_file.html
https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/common/deployment/syncfile/syncfile_synclist_file.html
https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskful/customize_image/syncfile.html
https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/common/deployment/syncfile/syncfile_synclist_file.html
https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/common/deployment/syncfile/syncfile_synclist_file.html

$ chdef -t osimage rh73-compute-stateless synclists=$synclist
1 object definitions have been created or modified.

$ lsdef -t osimage rh73-compute-stateless -i synclists
Object name: rh73-compute-stateless
 synclists=/install/custom/netboot/rhel/rh73-compute.synclist

For more configuration files for a specific node type, create a directory in
/install/custom/syncfiles and add the directory to the corresponding synclist file, as
shown in the following example:

/install/custom/syncfiles/compute/opt.

As of xCAT 2.12, nodes and node groups can be added to the synclist file. For more
information, see the Support nodes in synclist file page of the xCAT documentation website.

5.6.16 Generating and packing the image

Because this image is a stateless image, you must generate and pack the image before
providing it. The following steps are needed for a stateless image only:

1. Generate the stateless image by using the genimage command. It uses the osimage
definition information to generate the image:

$ genimage rh73-compute-stateless
Generating image:
<...>
the initial ramdisk for statelite is generated successfully.

This process can take some time. The installation process runs in a chroot environment on
the management node. Monitor the building process carefully and watch for possible
errors.

2. Check the content of the generated image:

$ lsdef -t osimage rh73-compute-stateless -i rootimgdir
Object name: rh73-compute-stateless
 rootimgdir=/install/netboot/rhels7.3/ppc64le/rh73-compute-stateless
$ rootimgdir=/install/netboot/rhels7.3/ppc64le/rh73-compute-stateless

$ ls -l $rootimgdir/rootimg
lrwxrwxrwx 1 root root 7 30. Nov 12:30 bin -> usr/bin
dr-xr-xr-x 3 root root 296 30. Nov 12:34 boot
drwxr-xr-x 2 root root 42 1. Dez 16:33 dev
drwxr-xr-x 75 root root 8192 1. Dez 16:35 etc
drwxr-xr-x 2 root root 10 10. Mär 2016 home
lrwxrwxrwx 1 root root 7 30. Nov 12:30 lib -> usr/lib
lrwxrwxrwx 1 root root 9 30. Nov 12:30 lib64 -> usr/lib64
drwxr-xr-x 2 root root 10 10. Mär 2016 media
drwxr-xr-x 2 root root 10 10. Mär 2016 mnt
drwxr-xr-x 11 root root 180 1. Dez 16:32 opt
drwxr-xr-x 2 root root 10 30. Nov 12:29 proc
dr-xr-x--- 2 root root 78 30. Nov 12:34 root
drwxr-xr-x 12 root root 234 1. Dez 16:22 run
lrwxrwxrwx 1 root root 8 30. Nov 12:30 sbin -> usr/sbin
drwxr-xr-x 2 root root 10 10. Mär 2016 srv
drwxr-xr-x 2 root root 10 30. Nov 12:29 sys
280 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/common/deployment/syncfile/syncfile_synclist_file.html#support-nodes-in-synclist-file

drwxrwxrwt 7 root root 245 1. Dez 16:34 tmp
drwxr-xr-x 14 root root 222 30. Nov 12:45 usr
drwxr-xr-x 19 root root 4096 30. Nov 12:45 var
drwxr-xr-x 6 root root 4096 1. Dez 16:35 xcatpost

3. Pack the generated image with the packimage command:

$ packimage rh73-compute-stateless
Packing contents of
/install/netboot/rhels7.3/ppc64le/rh73-compute-stateless/rootimg
archive method:cpio
compress method:gzip

5.6.17 Node provisioning

To start provisioning a compute node (or node group), and load the OS and software stack
according to the osimage and node group objects, complete the following steps:

1. Define the osimage attribute of a node (or node group) by using the nodeset command:

$ nodeset p8r1n1 osimage=rh73-compute-stateless
p8r1n1: netboot rhels7.3-ppc64le-compute

2. You can verify the changes to the nodes attributes by using the lsdef command:

$ lsdef p8r1n1
Object name: p8r1n1
 <...>
 initrd=xcat/osimage/rh73-compute-stateless/initrd-stateless.gz
 <...>
kcmdline=imgurl=http://!myipfn!:80//install/netboot/rhels7.3/ppc64le/rh73-compu
te-stateless/rootimg.cpio.gz XCAT=!myipfn!:3001 NODE=p8r1n1 FC=0
BOOTIF=70:e2:84:14:09:ae
 kernel=xcat/osimage/rh73-compute-stateless/kernel
 <...>
 os=rhels7.3
 <...>
 profile=compute
 provmethod=rh73-compute-stateless
 <...>

3. Set the boot method to network by using the rsetboot command (optional):

$ rsetboot p8r1n1 net

Note: After your image is generated, you can chroot to the image, install any other
software, or modify the files manually. However, it is recommended that the installation
steps are done by using all of the mechanisms that are described in 5.3.6, “xCAT OS
installation types: Disks and state” on page 205 because it ensures that a reproducible
image is produced.

Note: The packimage process can be accelerated by installing the parallel compression
tool pigz on the management node. For more information, see the Accelerating the
diskless initrd and rootimg generating page of the xCAT documentation website.

Note: This process is performed automatically by the nodeset command, and is not
required if the bootloader configuration for automatic boot is correct. For more
information, see 5.2.2, “Boot order configuration” on page 196.
Chapter 5. Node and software deployment 281

https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskless/customize_image/acc_initrd_rootimg_gen_ppc64le.html
https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskless/customize_image/acc_initrd_rootimg_gen_ppc64le.html

4. (Optional) Reboot the node (or node group) by using the rpower command:

$ rpower p8r1n1 reset

5. You can watch the node’s console by using the rcons command:

$ rcons p8r1n1

6. You can monitor the node boot progress in the node object and the /var/log/messages log
file:

$ lsdef p8r1n1 -i status
Object name: p8r1n1
 status=powering-on

$ lsdef p8r1n1 -i status
Object name: p8r1n1
 status=netbooting

lsdef p8r1n1 -i status
Object name: p8r1n1
 status=booted

$tail -f /var/log/messages | grep p8r1n1
<...>

5.6.18 Postinstallation verification

In this section, we describe the steps that are used to verify that the software stack is correctly
provisioned.

Verifying the CUDA Toolkit
Verify all GPUs are listed by using the nvidia-smi command:

$ xdsh p8r1n1 'nvidia-smi --list-gpus'
p8r1n1: GPU 0: Tesla P100-SXM2-16GB (UUID:
GPU-f8af01bb-b803-fe8e-b99b-692c5f0dd1bc)
p8r1n1: GPU 1: Tesla P100-SXM2-16GB (UUID:
GPU-8d457a4f-8b65-357f-8a53-0df1e14747c7)
p8r1n1: GPU 2: Tesla P100-SXM2-16GB (UUID:
GPU-8ec0ffa5-f00c-cf0f-1893-ad189a808ec2)
p8r1n1: GPU 3: Tesla P100-SXM2-16GB (UUID:
GPU-c6140208-48eb-48cc-8a12-7e77312f7312)

Verifying the Mellanox OFED
To verify the installation of Mellanox OFED, complete the following steps:

Note: This process is performed automatically (within some time) if the Genesis image
for node discovery is still running in the compute node (waiting for instructions from the
Management Node).

Note: For more information about checks, see Chapter 6, “Cluster monitoring and health
checking” on page 289.
282 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

1. Verify that the openibd service is correctly loaded and active by using the systemctl
command:

xdsh p8r1n1 'systemctl status openibd'
p8r1n1: * openibd.service - openibd - configure Mellanox devices
p8r1n1: Loaded: loaded (/usr/lib/systemd/system/openibd.service; enabled;
vendor preset: disabled)
p8r1n1: Active: active (exited) since Tue 2016-11-29 21:43:14 UTC; 3min 46s
ago
p8r1n1: Docs: file:/etc/infiniband/openib.conf
p8r1n1: Process: 6936 ExecStop=/etc/init.d/openibd stop (code=exited,
status=0/SUCCESS)
p8r1n1: Process: 7190 ExecStart=/etc/init.d/openibd start bootid=%b
(code=exited, status=0/SUCCESS)
p8r1n1: Main PID: 7190 (code=exited, status=0/SUCCESS)
p8r1n1: CGroup: /system.slice/openibd.service
p8r1n1:
p8r1n1: <...> systemd[1]: Starting openibd - configure Mellanox devices...
p8r1n1: <...> openibd[7190]: Loading HCA driver and Access Layer:[OK]
p8r1n1: <...> systemd[1]: Started openibd - configure Mellanox devices.

2. Verify the information and status of the InfiniBand adapter and ports by using the ibstat
command:

xdsh p8r1n1 ibstat
p8r1n1: CA 'mlx5_0'
p8r1n1: CA type: MT4115
p8r1n1: Number of ports: 1
p8r1n1: Firmware version: 12.17.2010
p8r1n1: Hardware version: 0
p8r1n1: Node GUID: 0xe41d2d03006751b2
p8r1n1: System image GUID: 0xe41d2d03006751b2
p8r1n1: Port 1:
p8r1n1: State: Active
p8r1n1: Physical state: LinkUp
p8r1n1: Rate: 100
p8r1n1: Base lid: 30
p8r1n1: LMC: 0
p8r1n1: SM lid: 1
p8r1n1: Capability mask: 0x2651e848
p8r1n1: Port GUID: 0xe41d2d03006751b2
p8r1n1: Link layer: InfiniBand
p8r1n1: CA 'mlx5_1'
p8r1n1: CA type: MT4115
p8r1n1: Number of ports: 1
p8r1n1: Firmware version: 12.17.0222
p8r1n1: Hardware version: 0
p8r1n1: Node GUID: 0xe41d2d0300f2a584
p8r1n1: System image GUID: 0xe41d2d0300f2a584
p8r1n1: Port 1:
p8r1n1: State: Active
p8r1n1: Physical state: LinkUp
p8r1n1: Rate: 100
p8r1n1: Base lid: 38
p8r1n1: LMC: 0
p8r1n1: SM lid: 1
p8r1n1: Capability mask: 0x2651e848
Chapter 5. Node and software deployment 283

p8r1n1: Port GUID: 0xe41d2d0300f2a584
p8r1n1: Link layer: InfiniBand

Verifying installed runtime libraries and MPI
Verify the installed version of all runtime libraries and MPI by using the rpm command:

$ xdsh p8r1n1 'rpm -qa | \
grep -E "xlc|xlf|advance-toolchain|ppedev|smpi|essl|pessl"'

p8r1n1: ibm_smpi-10.1.0.2-rh7.ppc64le
p8r1n1: pessl-license-5.3.0-0.noarch
p8r1n1: essl.3264.rte-5.5.0-0.ppc64le
p8r1n1: essl.rte-5.5.0-0.ppc64le
p8r1n1: xlf.rte-compute-15.1.5-0.noarch
p8r1n1: ppedev_mrnet-2.3.0-0.ppc64le
p8r1n1: pessl.3264.rte-5.3.0-0.ppc64le
p8r1n1: essl.rte.common-5.5.0-0.ppc64le
p8r1n1: pessl.msg-5.3.0-0.ppc64le
p8r1n1: essl.6464.rte-5.5.0-0.ppc64le
p8r1n1: ppedev.compute-2.3.0-0.noarch
p8r1n1: pessl.license-5.3.0-0.ppc64le
p8r1n1: ppedev_runtime-2.3.0-0.ppc64le
p8r1n1: libxlc-13.1.5.0-161028a.ppc64le
p8r1n1: libxlf-15.1.5.0-161028a.ppc64le
p8r1n1: pessl.rte.common-5.3.0-0.ppc64le
p8r1n1: essl.3264.rtecuda-5.5.0-0.ppc64le
p8r1n1: xlc-license.13.1.5-13.1.5.0-161028a.ppc64le
p8r1n1: pessl-computenode-5.3.0-0.noarch
p8r1n1: gcc-gfortran-4.8.5-11.el7.ppc64le
p8r1n1: ibm_smpi_lic_s-10.1-rh7.ppc64le
p8r1n1: xlf-license.15.1.5-15.1.5.0-161028a.ppc64le
p8r1n1: essl-computenode-5.5.0-0.noarch
p8r1n1: advance-toolchain-at10.0-runtime-10.0-1.ppc64le
p8r1n1: ppedev.license-2.3.0-0.noarch
p8r1n1: xlf.license-compute-15.1.5-0.noarch
p8r1n1: advance-toolchain-at10.0-mcore-libs-10.0-1.ppc64le
p8r1n1: pessl.common-5.3.0-0.ppc64le
p8r1n1: ppedev_license-2.3.0-0.ppc64le
p8r1n1: essl.common-5.5.0-0.ppc64le
p8r1n1: essl-license-5.5.0-0.noarch
p8r1n1: libgcc-4.8.5-11.el7.ppc64le
p8r1n1: essl.license-5.5.0-0.ppc64le
p8r1n1: essl.msg-5.5.0-0.ppc64le
p8r1n1: xlc.license-compute-13.1.5-0.noarch
p8r1n1: xlc.rte-compute-13.1.5-0.noarch

Verifying Spectrum Scale
Complete the following steps:

1. Verify the Spectrum Scale packages are installed by using the rpm command:

$ xdsh p8r1n1 'rpm -qa | grep ^gpfs'
p8r1n1: gpfs.gskit-8.0.50-47.ppc64le
p8r1n1: gpfs.gpl-4.1.1-3.noarch
p8r1n1: gpfs.ext-4.1.1-3.ppc64le
p8r1n1: gpfs.docs-4.1.1-3.noarch
p8r1n1: gpfs.msg.en_US-4.1.1-3.noarch
284 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

p8r1n1: gpfs.base-4.1.1-3.ppc64le

2. Verify that the node does not yet belong to any cluster by using the mmlscluster
command:

$ xdsh p8r1n1 'mmlscluster'
p8r1n1: mmlscluster: This node does not belong to a GPFS cluster.
p8r1n1: mmlscluster: Command failed. Examine previous error messages to
determine cause.

(Optional) Checking public and site network connectivity
Verify the connectivity to external and non-cluster nodes by using the ping command:

$ xdsh p8r1n1 'ping -c1 example.com'
p8r1n1: PING example.com (93.184.216.34) 56(84) bytes of data.
p8r1n1: 64 bytes from 93.184.216.34: icmp_seq=1 ttl=46 time=3.94 ms
<...>

5.7 xCAT Login Nodes (stateful)

The process that is used to deploy an xCAT login node is similar to the xCAT compute node
deployment. The main difference is the particular software stack components that are used
on each node type. Also, other methods need some change because login nodes often use a
stateful image.

Therefore, this section does not describe the deployment instructions for login nodes. Instead,
it describes some examples of the differences in the software stack components and methods
between login and compute nodes.

The following differences are typically considered for the login nodes:

� Use the rhels7.3-ppc64le-install-compute osimage as an initial template.

� Consider the configuration of RAID and disk partitions. For more information, see the
following pages of the xCAT documentation website:

– Configure RAID before deploying the OS
– Configure Disk Partition

� CUDA Toolkit often is not required because the extra compute-related hardware is not
present on login nodes.

� The Mellanox OFED installation process is slightly different. Use the postscripts node
attribute instead of the postinstall osimage attribute to start the mlnxofed_ib_install
script. For more information, see the Diskful Installation page of the XCAT documentation
website.

� The XL C/C++ and Fortran compilers use the login nodes to compile applications.
Therefore, the compiler package must be installed. Add the following appropriate xCAT
software kits:

Object name: xlc.compiler-compute-13.1.5-0-rhels-7-ppc64le
description=XLC13 for compiler kitcomponent

Object name: xlf.compiler-compute-15.1.5-0-rhels-7-ppc64le
description=XLF15 for compiler kitcomponent

� Advance Toolchain needs at least the
advance-toolchain-at10.0-devel-10.0-1.ppc64le.rpm package for compiler support. It is
also recommended to install advance-toolchain-at10.0-perf-10.0-1.ppc64le.rpm.
Chapter 5. Node and software deployment 285

https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskful/customize_image/raid_cfg.html
https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskful/customize_image/raid_cfg.html
https://xcat-docs.readthedocs.io/en/latest/guides/admin-guides/manage_clusters/ppc64le/diskful/customize_image/cfg_partition.html
https://xcat-docs.readthedocs.io/en/latest/advanced/networks/infiniband/mlnxofed_ib_install_v2_diskful.html

� The PGI compiler installation is different because the entire PGI compiler stack is needed.
Complete the following steps to install it:

a. Ensure that your pkglist includes the following packages because they are a
requirement for PGI compilers:

gcc
gcc-c++

b. Create a postscript as shown in the following example to perform an unattended
installation:

$ script=/install/postscripts/install_pgi_login
$ cat /install/postscripts/install_pgi_login

#!/bin/bash

INSTALL_TAR="/install/software/compilers/pgi/pgilinux-2016-1610-ppc64le.t
ar.gz"
INSTALL_PATH="/opt/pgi"
PGI_PATH="/opt/pgi/linuxpower/16.10"
PROFILE_FILENAME="/etc/profile.d/xcat-pgi.sh"

environment variables for unattended install
export PGI_SILENT="true"
export PGI_ACCEPT_EULA="accept"
export PGI_INSTALL_DIR="$INSTALL_PATH"
export PGI_INSTALL_TYPE="single"

get tar and extract it
dir=/tmp/pgi_install
mkdir $dir
cd $dir
wget -l inf -N --waitretry=10 --random-wait --retry-connrefused -t 10 -T
60 -nH --no-parent "http://$MASTER/$INSTALL_TAR" 2> wget.log
tar -xf "${INSTALL_TAR##*/}"

do installation
./install

set the paths required for pgi
echo "export PGI=$INSTALL_PATH" > "${PROFILE_FILENAME}"
echo "export PATH=$PGI_PATH/bin:\$PATH" >> "${PROFILE_FILENAME}"

cd ..
comment for debugging
rm -rf $dir

$ chmod +x $script
$ chdef -t <login_node> --plus postscripts=install_pgi_login
286 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

� The kits for PPT, ESSL, and PESSL provide kit components that are specifically for login
nodes, for example:

Object name: ppedev.login-2.3.0-0-rhels-7.3-ppc64le
description=Parallel Performance Toolkit for login nodes

Object name: essl-loginnode-5.5.0-0-rhels-7.3-ppc64le
description=essl for login nodes

Object name: pessl-loginnode-5.3.0-0-rhels-7.3-ppc64le
description=pessl for login nodes

� The parallel file system (IBM Spectrum Scale) system can allow the login node to access
the data that is provided to or produced by the applications that are running in the compute
nodes.

� The job scheduler (Spectrum LSF) is typically required to submit jobs from the login nodes
to the compute nodes.
Chapter 5. Node and software deployment 287

288 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Chapter 6. Cluster monitoring and health
checking

Monitoring is an important task that helps in maintaining cluster resources and ensures its
serviceability to users. Monitoring involves resource control and health check tasks on the
various nodes (compute, login, and services), networking devices, and storage systems.

This chapter introduces some tools and resources that can be employed to support
monitoring of a high-performance computing (HPC) cluster.

This chapter includes the following topics:

� 6.1, “Basic commands” on page 290
� 6.2, “IBM Spectrum LSF tools for job monitoring” on page 292
� 6.3, “Using the BMC for node monitoring” on page 300
� 6.4, “Using nvidia-smi tool for GPU monitoring” on page 302
� 6.5, “Diagnostic and health check framework” on page 310

6

© Copyright IBM Corp. 2017. All rights reserved. 289

6.1 Basic commands

This chapter describes the following basic commands that can be used to check the overall
hardware status of a cluster. (This information is for reference only.) For information, see 6.5,
“Diagnostic and health check framework” on page 310:

� The rpower command controls the power of the nodes remotely. The most typically used
power commands include: on, off, boot, and status.

The rpower command is run from the xCAT management node, as shown in Example 6-1.

Example 6-1 The rpower command

rpower <nodelist> [power control option]
$ rpower c931f04p30,c931f04p32,c931f04p34 on
c931f04p30: on
c931f04p32: on
c931f04p34: on

� The rinv command shows inventory details regarding the various components of the
specified node: firmware versions, hardware serial numbers, and hardware types.

Use this command to verify details regarding the hardware inventory. This command is run
from the xCAT management node, as shown in Example 6-2.

Example 6-2 The rinv command

rinv <nodelist> [inventory types]
$ rinv c931f04p30 firmware
c931f04p30: BMC Firmware: 2.13

� The rvitals command shows the temperature, voltage, and general vital statistics of the
nodes that are specified in the command.

Use this command to determine the environmental data regarding your node. This
command is run from the xCAT management node, as shown in Example 6-3.

Example 6-3 The rvitals command

rvitals <nodelist> [vital types]
$ rvitals c931f04p30 temp
c931f04p30: Ambient Temp: 16 C (61 F)
c931f04p30: CPU 1 VDD Temp: 46 C (115 F)
c931f04p30: CPU 2 VDD Temp: 40 C (104 F)
...

� The nodestat command shows the current running status for the supplied nodes:
Running, noping, or any number of deployment statuses.

Use this command to determine the state of your nodes after a reboot or if the node
appears to be inaccessible. This command is run from the xCAT management node, as
shown in Example 6-4.

Example 6-4 The nodestat command

nodestat <nodelist>
$ nodestat c931f04p30,c931f04p32
c931f04p30: sshd
c931f04p32: sshd
290 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

� The nodels command allows you to query the xCAT database for that node. After listing
the nodes supply either the table or table.column.

Use this command to determine the last recorded details for the nodes supplied. This
command is run from the xCAT management node as shown in Example 6-5.

Example 6-5 The nodels command

nodels <nodelist> [table.column]
$ nodels c931f04p[30,32] nodelist.status
c931f04p30: powering-on
c931f04p32: powering-on

The following commands are basic Linux commands that are used to query the hardware
inventory. These commands must be run on the compute node or by using the xdsh
command:

� The lscpu command shows basic information about the processor, such as the number of
sockets, cores, threads, NUMA nodes, and cache size. Sample output of this command is
shown in Example 6-6.

Example 6-6 The lscpu command

$ lscpu
Architecture: ppc64le
Byte Order: Little Endian
CPU(s): 160
On-line CPU(s) list: 0-159
Thread(s) per core: 8
Core(s) per socket: 10
Socket(s): 2
NUMA node(s): 2
Model: 8335-GTB
L1d cache: 64 K
L1i cache: 32 K
L2 cache: 512 K
L3 cache: 8192 K
NUMA node0 CPU(s): 0-79
NUMA node1 CPU(s): 80-159

� The free command shows the amount of RAM a node, as shown in Example 6-7.

Example 6-7 The free command

$ free -h
 total used free shared buff/cache available
Mem: 1.0T 6.4G 1.0T 21M 2.0G 1.0T
Swap: 15G 0B 15G
Chapter 6. Cluster monitoring and health checking 291

� By using the ibstat command, you can check information that is related to the InfiniBand
adapter, including firmware, link status, and link speed. Sample output of this command is
shown in Example 6-8.

Example 6-8 The ibstat command

$ ibstat
CA 'mlx5_0'

CA type: MT4115
Number of ports: 1
Firmware version: 12.16.1006
Hardware version: 0
Node GUID: 0x7cfe900300576fcc
System image GUID: 0x7cfe900300576fcc
Port 1:

State: Active
Physical state: LinkUp
Rate: 100
Base lid: 6
LMC: 0
SM lid: 1
Capability mask: 0x2651e848
Port GUID: 0x7cfe900300576fcc
Link layer: InfiniBand

For more information about NVIDIA GPUs, see 6.4, “Using nvidia-smi tool for GPU
monitoring” on page 302.

6.2 IBM Spectrum LSF tools for job monitoring

IBM Spectrum Load Sharing Facility (LSF) provides a comprehensive set of tools that can be
implemented for monitoring the cluster. This section describes how to use some of these
tools to complete common tasks. The following commands are used in this section:

� lsclusters: Lists all configured clusters.

� lsid: Shows the current Spectrum LSF version number, the cluster name, and master
host name.

� lshosts: Displays hosts information.

� lsload: Displays load-per-host information.

� bhosts: Displays information about batches.

� bjobs: Displays information about jobs.

� bqueues: Displays information about batch queues.

� bparams: Displays batch parameters.

� badmin: Provides a set of administrative subcommands for batches.

� lsadmin: Provides a set of administrative subcommands for hosts.

For more information about all of the available commands and usage guides, see the IBM
Spectrum LSF Command Reference page at the Spectrum LSF manual website.
292 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

https://www.ibm.com/support/knowledgecenter/SSWRJV_10.1.0/lsf_welcome/lsf_kc_cmd_ref.html
https://www.ibm.com/support/knowledgecenter/SSWRJV_10.1.0/lsf_welcome/lsf_kc_cmd_ref.html

6.2.1 General information about clusters

The lsclusters command shows information about the clusters that are managed by the
Spectrum LSF master host server, as shown in Example 6-9.

Example 6-9 Spectrum LSF lsclusters command to gather information about the clusters

$ lsclusters
CLUSTER_NAME STATUS MASTER_HOST ADMIN HOSTS SERVERS
lsf-cluster ok p8r1n1 lsfadmin 2 2

As shown in Example 6-10, the lsid command is used to display the cluster name, master
host server, and version of Spectrum LSF.

Example 6-10 Spectrum LSF lsid command to display cluster name and master host

$ lsid
IBM Platform LSF Standard 10.1.0.1, Oct 31 2016
Copyright IBM Corp. 1992, 2014. All rights reserved.
US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

My cluster name is lsf-cluster
My master name is p8r1n1

Use the badmin command with the showstatus flag (as shown in Example 6-11) to get an
overview of servers, users, groups, and jobs in the cluster. Notice that the badmin command is
a suite of commands to manage batch-related configuration and daemons. For more
information about its features, see “Managing batch services” on page 298 and “Managing
the LIM and Remote Execution Server services” on page 300.

Example 6-11 Spectrum LSF badmin command to show master host batch daemon status

$ badmin showstatus
LSF runtime mbatchd information
 Available local hosts (current/peak):
 Clients: 0/0
 Servers: 2/2
 CPUs: 2/2
 Cores: 40/40
 Slots: unlimited/unlimited

 Number of servers: 2
 Ok: 2
 Closed: 0
 Unreachable: 0
 Unavailable: 0

 Number of jobs: 1
 Running: 1
 Suspended: 0
 Pending: 0
 Finished: 0

 Number of users: 4
 Number of user groups: 1
Chapter 6. Cluster monitoring and health checking 293

 Number of active users: 1

 Latest mbatchd start: Thu Jan 10 21:21:33 2017
 Active mbatchd PID: 4617

 Latest mbatchd reconfig: -

6.2.2 Getting information about hosts

The Spectrum LSF master host obtains static and dynamic information about the subordinate
hosts of the cluster. Static information means properties that are difficult to change, such as
system memory, disk capacity, topology, and the number of CPUs. In contrast, dynamic
information depends on current workload on the system, such as the amount of memory that
is used, the amount of swap memory, and jobs that are scheduled to run.

By default, the commands that are highlighted in this section display information about all
hosts in the cluster, unless a host name is specified. Also, a subset of hosts can be selected
by using resources requirement expressions. Example 6-12 shows an expression (specified as
an argument of the -R option) to select hosts whose model matches POWER8.

Example 6-12 Spectrum LSF lshosts command to show subordinate hosts selected by the expression

$ lshosts -R "select[model==POWER8]"
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
p8r1n1 LINUXPP POWER8 250.0 160 256G 3.9G Yes (mg)
p8r2n2 LINUXPP POWER8 250.0 160 256G 3.9G Yes (mg)

Resource requirements can also be used in scheduling of jobs and with other Spectrum LSF
commands. For more information about the language to express requirements, see the About
resource requirement strings section of the Spectrum LSF manual.

By default, the lshost command displays static information about all hosts that are configured
in the local cluster as shown in Example 6-13. The columns cpuf, ncpus, maxmem, and maxswp
display the CPU performance factor, number of CPUs, maximum memory, and maximum
swap memory.

Example 6-13 Spectrum LSF lshosts command shows static information of hosts

$ lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
p8r1n1 LINUXPP POWER8 250.0 160 256G 3.9G Yes (mg)
p8r2n2 LINUXPP POWER8 250.0 160 256G 3.9G Yes (mg)

More information about individual hosts can be queried by passing the -l option to the lshost
command, as shown in Example 6-14. Notice that in addition to the static information, the -l
option reports the current load status of the host.

Example 6-14 Spectrum LSF lshosts command displays static information about a specified host

$ lshosts -l p8r2n2

HOST_NAME: p8r2n2
type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server nprocs ncores nthreads
LINUXPPC64 POWER8 250.0 160 1 256G 3.9G 949020M 0 Yes 1 20 8

RESOURCES: (mg)
294 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

https://www.ibm.com/support/knowledgecenter/SSWRJV_10.1.0/lsf_admin/res_req_strings_about.html
https://www.ibm.com/support/knowledgecenter/SSWRJV_10.1.0/lsf_admin/res_req_strings_about.html

RUN_WINDOWS: (always open)

LOAD_THRESHOLDS:
 r15s r1m r15m ut pg io ls it tmp swp mem pnsd pe_network
 - 3.5 - - - - - - - - - - -

The lshosts command with -T option shows the nonuniform memory access (NUMA)
topology of the hosts. In Example 6-15, the lshosts command reports a two-node (0 and 8)
S822LC host (p8r2n2), with 128 GB of memory available per node (for a total of 256 GB). It
also shows 10 processor cores per NUMA node, each with 8 CPUs (SMT8 mode).

Example 6-15 Spectrum LSF lshosts command shows NUMA topology of a specified host

$ lshosts -T p8r2n2
Host[256G] p8r2n2
 NUMA[0: 128G]
 core(0 1 2 3 4 5 6 7)
 core(8 9 10 11 12 13 14 15)
 core(16 17 18 19 20 21 22 23)
 core(24 25 26 27 28 29 30 31)
 core(32 33 34 35 36 37 38 39)
 core(40 41 42 43 44 45 46 47)
 core(48 49 50 51 52 53 54 55)
 core(56 57 58 59 60 61 62 63)
 core(64 65 66 67 68 69 70 71)
 core(72 73 74 75 76 77 78 79)
 NUMA[8: 128G]
 core(80 81 82 83 84 85 86 87)
 core(88 89 90 91 92 93 94 95)
 core(96 97 98 99 100 101 102 103)
 core(104 105 106 107 108 109 110 111)
 core(112 113 114 115 116 117 118 119)
 core(120 121 122 123 124 125 126 127)
 core(128 129 130 131 132 133 134 135)
 core(136 137 138 139 140 141 142 143)
 core(144 145 146 147 148 149 150 151)
 core(152 153 154 155 156 157 158 159)

In contrast to the lshost command that provides only static information, the lsload command
gives dynamic information for the hosts. Example 6-16 shows load information for all hosts in
the cluster.

Example 6-16 Spectrum LSF lsload command reports dynamic information for the hosts

$ lsload
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
p8r2n2 ok 0.1 0.0 0.0 0% 0.0 1 0 920G 3.9G 246G
p8r1n1 ok 1.0 0.0 0.1 0% 0.0 0 8518 920G 3.9G 245G

The report features the following column headings:

� status reports the status of the host. This column features the following possible values:

– ok: The host is ready to accept remote jobs.
– -ok: The LIM daemon is running, but the RES daemon is unreachable.
– busy: The host is overloaded.
– lockW: The host is locked by its run window.
Chapter 6. Cluster monitoring and health checking 295

– lockU: The host is locked by the LSF administrator or root.
– unavail: The host is down or the LIM daemon is not running.

� r15s, r1m, and r15m indicate that the CPU load averaged exponentially over the last 15
seconds, 1 minute, and 15 minutes, respectively.

� ut is the CPU utilization time that is averaged exponentially over the last minute.

� pg is the memory paging rate that is averaged exponentially over the last minute.

� ls is the number of current login users.

� it shows the idle time of the host.

� tmp is the amount of free space in the /tmp directory.

� swp is the amount of free swap space.

� mem is the amount of memory available on the host.

Other options can be used with the lsload command to display different information. For
example, the -l option displays network resources information for scheduling IBM Parallel
Environment (PE) jobs and also the disk I/O rate.

6.2.3 Getting information about jobs and queues

Some commands are available to monitor the workload in the cluster and give information
about jobs and queue status. The bhosts command reports jobs statistics per-host, which is
useful to see the overall cluster workload, as shown in Example 6-17.

Example 6-17 Spectrum LSF bhosts to report on hosts batch jobs status

$ bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
p8r1n1 ok - - 1 1 0 0 0
p8r2n2 ok - - 0 0 0 0 0

To show unfinished jobs in the entire cluster, use the bjobs command (see Example 6-18).
You can use the -a option with the bjobs command to view all recently finished jobs and those
jobs that are still running.

Example 6-18 Spectrum LSF bjobs command to show unfinished jobs

$ bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
209 wainers RUN normal p8r1n1 p8r1n1 serial Jan 10 17:18

The bjobs command can also be used to report more information about a job, as shown in
Example 6-19.

Example 6-19 Spectrum LSF bjobs command to show detailed information about a job

$ bjobs -l 209

Job <209>, Job Name <serial>, User <wainersm>, Project <default>, Status <RUN>,
 Queue <normal>, Command <#!/bin/sh; #BSUB -o %J.out -e %J
 .err;#BSUB -J serial; ./noop>, Share group charged </waine
 rsm>
Thu Apr 14 17:18:41: Submitted from host <p8r1n1>, CWD <$HOME/lsf/noop>, Output
 File <209.out>, Error File <209.err>;
Thu Apr 14 17:18:42: Started 1 Task(s) on Host(s) <p8r1n1>, Allocated 1 Slot(s)
296 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

 on Host(s) <p8r1n1>, Execution Home </home/wainersm>, Exe
 cution CWD </home/wainersm/lsf/noop>;
Thu Apr 14 17:22:41: Resource usage collected.
 MEM: 22 Mbytes; SWAP: 0 Mbytes; NTHREAD: 5
 PGID: 82953; PIDs: 82953 82954 82958 82959

 MEMORY USAGE:
 MAX MEM: 22 Mbytes; AVG MEM: 22 Mbytes

 SCHEDULING PARAMETERS:
 r15s r1m r15m ut pg io ls it tmp swp mem
 loadSched - - - - - - - - - - -
 loadStop - - - - - - - - - - -

 RESOURCE REQUIREMENT DETAILS:
 Combined: select[type == local] order[r15s:pg]
 Effective: select[type == local] order[r15s:pg]

The bqueues command displays information about the queues of the jobs that are available in
a cluster along with use statistics. The command list queues are sorted by priority (PRIO). It
also reports their status (STATUS), maximum number of job slots (MAX), maximum jobs slots
per users (JL/U), maximum job slots per processors (JL/P), maximum job slots per slot (JL/H),
number of tasks for jobs (NJOBS), and number of jobs pending (PEN), running (RUN) and
suspended (SUSP).

Example 6-20 shows the output of a bqueues command.

Example 6-20 Spectrum LSF bqueues command to show available job queues

$ bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
admin 50 Open:Active - - - - 0 0 0 0
owners 43 Open:Active - - - - 0 0 0 0
priority 43 Open:Active - - - - 0 0 0 0
night 40 Open:Inact - - - - 0 0 0 0
chkpnt_rerun_qu 40 Open:Active - - - - 0 0 0 0
short 35 Open:Active - - - - 0 0 0 0
license 33 Open:Active - - - - 0 0 0 0
normal 30 Open:Active - - - - 1 0 1 0
interactive 30 Open:Active - - - - 0 0 0 0
hpc_linux 30 Open:Active - - - - 0 0 0 0
hpc_linux_tv 30 Open:Active - - - - 0 0 0 0
idle 20 Open:Active - - - - 0 0 0 0

6.2.4 Administering the cluster

High-performance computing (HPC) cluster administration involves many non-trivial tasks,
although tools, such as Spectrum LSF, simplify the process. This section describes a small
part of the Spectrum LSF capabilities and tools. For more information, see the Administering
and Configuring IBM Platform LSF page of the IBM Knowledge Center website.
Chapter 6. Cluster monitoring and health checking 297

http://www.ibm.com/support/knowledgecenter/SSWRJV_10.1.0/lsf_kc_managing.html
http://www.ibm.com/support/knowledgecenter/SSWRJV_10.1.0/lsf_kc_managing.html
http://www.ibm.com/support/knowledgecenter/SSWRJV_10.1.0/lsf_kc_managing.html
http://www.ibm.com/support/knowledgecenter/SSWRJV_10.1.0/lsf_kc_managing.html

The Spectrum LSF configuration directory has a few files in which global and per-cluster
basis configurations are defined. Its path depends on the installation that is performed by the
administrator and the LSF_ENVDIR environment variable value, as shown in the following
example:

$ echo $LSF_ENVDIR
/usr/share/lsf/conf

The bare minimum Spectrum LSF configuration directory includes the following files:

� lsf.shared: Contains the cluster names and definitions that can be referenced by
configuration files.

� lsf.conf: Contains global configurations that are shared among clusters defined on
lsf.shared.

� lsf.cluster.<cluster-name>: Contains per cluster name-specific configurations, such as
the list of hosts and their attributes, administrators, and resources mapping.

Other configuration files are available; for example, lsf.queue is the file where batch queues
are defined.

Typically, any change requires restarting the Spectrum LSF servers and daemons; therefore,
these changes are often followed by running the badmin reconfig and the lsadmin reconfig
commands so that the new configurations take effect.

Managing batch services
To check all batch configuration parameters, use the bparams command. Without any options,
it displays basic information, as shown in Example 6-21. MBD_SLEEP_TIME is the jobs dispatch
interval.

Example 6-21 Spectrum LSF bparams command to show basic batch configuration parameters

$ bparams
Default Queues: normal interactive
MBD_SLEEP_TIME used for calculations: 10 seconds
Job Checking Interval: 7 seconds
Job Accepting Interval: 0 seconds

Example 6-22 lists configured batch parameters with the bparams -l command. Because the
list of parameters is long, many of them are omitted from the output, as shown in
Example 6-22.

Example 6-22 Spectrum LSF bparams to show detailed batch configuration parameters

$ bparams -l

System default queues for automatic queue selection:
 DEFAULT_QUEUE = normal interactive

Amount of time in seconds used for calculating parameter values:
 MBD_SLEEP_TIME = 10 (seconds)

The interval for checking jobs by slave batch daemon:
 SBD_SLEEP_TIME = 7 (seconds)

The interval for a host to accept two batch jobs:
 JOB_ACCEPT_INTERVAL = 0 (* MBD_SLEEP_TIME)
298 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

The idle time of a host for resuming pg suspended jobs:
 PG_SUSP_IT = 180 (seconds)

The amount of time during which finished jobs are kept in core memory:
 CLEAN_PERIOD = 3600 (seconds)

The maximum number of retries for reaching a slave batch daemon:
 MAX_SBD_FAIL = 3

<... Omitted output ...>
Resets the job preempted counter once this job is requeued, migrated, or rerun:
 MAX_JOB_PREEMPT_RESET = Y

Disable the adaptive chunking scheduling feature:
 ADAPTIVE_CHUNKING = N

Spectrum LSF uses default batch parameters unless the (optional) lsb.params file is
deployed in $LSF_ENVDIR/<cluster-name>/configdir as a per-cluster configuration file. After
any change to lsb.params, run the badmin reconfig command to reconfigure the mbatchd
daemon.

The badmin administrative tool provides some debugging subcommands that can help
determine problems with batch daemons. The following commands can be run with the
Spectrum LSF administrator user:

� sbddebug: Debug the slave batch daemon
� mbddebug: Debug the master batch daemon
� schddebug: Debug the scheduler batch daemon

As a case study, Example 6-23 shows the output of the bhosts command, in which the p8r2n2
host is marked as unreachable.

Example 6-23 Spectrum LSF bhosts command to determine problem on batch services

$ bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
p8r1n1 ok - - 0 0 0 0 0
p8r2n2 unreach - - 0 0 0 0 0

From the master host (p8r1n1), badmin mbddebug nor badmin schddebug reported errors. Now,
badmin sbddebug shows that the batch daemon is unreachable:

$ badmin sbddebug p8r2n2
failed : Slave batch daemon (sbatchd) is unreachable now on host p8r2n2

These issues are fixed by restarting the slave batch daemon, as shown in Example 6-24.

Example 6-24 Spectrum LSF badmin command to start slave batch daemon

$ badmin hstartup p8r2n2
Start up slave batch daemon on <p8r2n2> ? [y/n] y
Start up slave batch daemon on <p8r2n2> done

As a result, the slave batch daemon is back online again:

$ bhosts p8r2n2
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
p8r2n2 ok - - 0 0 0 0 0
Chapter 6. Cluster monitoring and health checking 299

Managing the LIM and Remote Execution Server services
Spectrum LSF deploys the Load Information Manager (LIM) and Remote Execution Server
servers in each host, where they run as daemons. These servers play the following roles in
the Spectrum LSF system:

� LIM collects load and configuration information about the host.

� Remote Execution Server provides execution services. It allows secure and transparent
execution of jobs and tasks on the host.

The lsadmin tool provides flags to manage the LIM and Remote Execution Server in a single
host or groups. Operations to start, stop, and restart the daemons are carried out by the
limstartup, limshutdown, limrestart, resstartup, resshutdown and resrestart flags.

The lsadmin command provides a useful flag to check the correctness of LIM and Remote
Execution Server configurations called chkconfig:

$ lsadmin ckconfig

Checking configuration files ...
No errors found.

The badmin command includes limdebug and resdebug flags for debugging problems with LIM
and RES daemons.

6.3 Using the BMC for node monitoring

xCAT provides several tools to monitor the BMC, as described in 6.1, “Basic commands” on
page 290. Some commands are described in 5.2.1, “Frequently used commands with the
IPMItool” on page 194.

This chapter describes several techniques that can be used for monitoring the node with the
BMC.

The sdr command can be used to query the various sensors on the node. The sdr command
can retrieve metrics for several sensors, including temperature, voltage, power consumption,
firmware status, and component functions. Example 6-25 shows how to use the sdr
command to get the sensor data from the Temperature sensors.

For more information about sensor types, see the output of sdr type.

Example 6-25 The sdr command

$ ipmitool -H <IP> -U ADMIN -P admin sdr type Temperature
CPU Diode 1 | C8h | ok | 3.0 | 37 degrees C
CPU Diode 2 | CBh | ok | 3.0 | 36 degrees C
CPU1 Temp | 0Bh | ok | 3.0 | 46 degrees C
CPU2 Temp | 0Dh | ok | 3.1 | 43 degrees C
DIMM1 Temp | 69h | ok | 32.0 | 37 degrees C
DIMM2 Temp | 6Ah | ok | 32.1 | 37 degrees C
DIMM3 Temp | 6Bh | ok | 32.2 | 35 degrees C
DIMM4 Temp | 6Ch | ok | 32.3 | 36 degrees C
Mem Buf Temp 1 | C0h | ok | 209.0 | 46 degrees C
...
Ambient Temp | 0Ah | ok | 7.0 | 32 degrees C
CPU Core Temp 1 | 89h | ok | 208.0 | 45 degrees C
...
300 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

GPU Temp 1 | BCh | ns | 216.0 | No Reading
GPU Temp 2 | BDh | ns | 216.1 | No Reading
GPU Temp 3 | BEh | ns | 216.2 | No Reading
GPU Temp 4 | BFh | ns | 216.3 | No Reading
CPU 1 VDD Temp | E4h | ok | 3.0 | 41 degrees C
CPU 2 VDD Temp | E5h | ok | 3.1 | 41 degrees C

The fru command gathers data for the various field replaceable units (FRU) that are owned
by the node. Each entry is expected to have a manufacturer code, name, part number, and
serial number. If a component is missing, an Unknown FRU message is expected in the
output. Example 6-26 shows the output from the use of the fru command to identify missing
components.

Example 6-26 The fru command

$ ipmitool -H <IP> -U ADMIN -P admin fru print
...
FRU Device Description : DIMM32 (ID 43)
 Product Manufacturer : 2c80
 Product Name : 0c
 Product Part Number : 18ASF1G72PDZ-2G3B1
 Product Version : 31
 Product Serial : ******

FRU Device Description : GPU1 (ID 44)
 Unknown FRU header version 0x00
...
FRU Device Description : PSU2 (ID 49)
 Product Manufacturer : EMER
 Product Name : Texan1300W
 Product Part Number : 01AF314
 Product Version : 0.12
 Product Serial : ******
 Product Asset Tag : 0.1
...
$ ipmitool -H 10.4.4.22 -U ADMIN -P admin fru print 2>&1 | grep "^$" -B1 | grep
"^FRU"
FRU Device Description : Builtin FRU Device (ID 0)
FRU Device Description : GPU1 (ID 44)
FRU Device Description : GPU2 (ID 45)
FRU Device Description : FAN1 (ID 46)
FRU Device Description : FAN2 (ID 50)
FRU Device Description : FAN3 (ID 51)
FRU Device Description : FAN4 (ID 52)
FRU Device Description : GPU3 (ID 53)
FRU Device Description : GPU4 (ID 54)

The following commands also are useful:

� To display the machine type and model, serial number, and other information:

$ ipmitool <arguments> fru print 3

� Display system firmware version information:

$ ipmitool <arguments> fru print 47
Chapter 6. Cluster monitoring and health checking 301

6.4 Using nvidia-smi tool for GPU monitoring

NVIDIA provides a tool to control the status and health of GPUs that is called the System
Management Interface (nvidia-smi). The tool shows different levels of information,
depending on the generation of your card. Some options can be disabled and enabled when
this tool is used.

Example 6-27 shows default output for the example system with four NVIDIA Tesla P100
cards.

Example 6-27 Default nvidia-smi output

$ nvidia-smi
Thu Nov 10 21:29:53 2016
+---+
| NVIDIA-SMI 361.93.01 Driver Version: 361.93.01 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla P100-SXM2... Off | 0002:01:00.0 Off | 0 |
| N/A 42C P0 30W / 300W | 0MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla P100-SXM2... Off | 0003:01:00.0 Off | 0 |
| N/A 38C P0 29W / 300W | 0MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla P100-SXM2... Off | 0006:01:00.0 Off | 0 |
| N/A 43C P0 30W / 300W | 0MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla P100-SXM2... Off | 0007:01:00.0 Off | 0 |
| N/A 39C P0 27W / 300W | 0MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| No running processes found |
+---+
302 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

6.4.1 Information about jobs on GPU

When the system has jobs that use graphics processing unit (GPU) calls inside them, you can
find information (name and PID of tasks, GPU number for each process, and GPU memory
usage) about it in the bottom section of the default nvidia-smi call. This section is shown in
Example 6-28 for a sample MPI run with 10 MPI tasks, where each task uses only one GPU
with a number that is assigned in round-robin order.

Example 6-28 Process section of nvidia-smi output during MPI run

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 0 23102 C ./sample_mpi 971MiB |
| 1 23103 C ./sample_mpi 834MiB |
| 2 23104 C ./sample_mpi 971MiB |
| 3 23105 C ./sample_mpi 834MiB |
| 0 23106 C ./sample_mpi 971MiB |
| 1 23107 C ./sample_mpi 834MiB |
| 2 23108 C ./sample_mpi 971MiB |
| 3 23109 C ./sample_mpi 834MiB |
| 0 23110 C ./sample_mpi 971MiB |
| 1 23111 C ./sample_mpi 834MiB |
+---+

6.4.2 All GPU details

To show all of the information about GPUs inside your node, use the -q option. To list only
data about specific GPU, specify the ID with the -i option. Example 6-29 on page 304 shows
the second GPU that uses these options.
Chapter 6. Cluster monitoring and health checking 303

Example 6-29 Detailed information about second GPU in system using nvidia-smi

$ nvidia-smi -q -i 1

==============NVSMI LOG==============

Timestamp : Thu Nov 10 21:31:49 2016
Driver Version : 361.93.01

Attached GPUs : 4
GPU 0003:01:00.0
 Product Name : Tesla P100-SXM2-16GB
 Product Brand : Tesla
 Display Mode : Disabled
 Display Active : Disabled
 Persistence Mode : Disabled
 Accounting Mode : Disabled
 Accounting Mode Buffer Size : 1920
 Driver Model
 Current : N/A
 Pending : N/A
 Serial Number : ************
 GPU UUID : GPU-23eded49-4de4-c4d3-8ef7-********
 Minor Number : 1
 VBIOS Version : 86.00.1C.00.01
 MultiGPU Board : No
 Board ID : 0x30100
 GPU Part Number : 900-2H403-0400-000
 Inforom Version
 Image Version : H403.0201.00.04
 OEM Object : 1.1
 ECC Object : 4.1
 Power Management Object : N/A
 GPU Operation Mode
 Current : N/A
 Pending : N/A
 PCI
 Bus : 0x01
 Device : 0x00
 Domain : 0x0003
 Device Id : 0x15F910DE
 Bus Id : 0003:01:00.0
 Sub System Id : 0x116B10DE
 GPU Link Info
 PCIe Generation
 Max : 3
 Current : 3
 Link Width
 Max : 16x
 Current : 8x
 Bridge Chip
 Type : N/A
 Firmware : N/A
 Replays since reset : 0
 Tx Throughput : 0 KB/s
 Rx Throughput : 0 KB/s
304 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

 Fan Speed : N/A
 Performance State : P0
 Clocks Throttle Reasons
 Idle : Not Active
 Applications Clocks Setting : Active
 SW Power Cap : Not Active
 HW Slowdown : Not Active
 Sync Boost : Not Active
 Unknown : Not Active
 FB Memory Usage
 Total : 16280 MiB
 Used : 0 MiB
 Free : 16280 MiB
 BAR1 Memory Usage
 Total : 16384 MiB
 Used : 2 MiB
 Free : 16382 MiB
 Compute Mode : Default
 Utilization
 Gpu : 0 %
 Memory : 0 %
 Encoder : 0 %
 Decoder : 0 %
 Ecc Mode
 Current : Enabled
 Pending : Enabled
 ECC Errors
 Volatile
 Single Bit
 Device Memory : 0
 Register File : 0
 L1 Cache : N/A
 L2 Cache : 0
 Texture Memory : 0
 Texture Shared : 0
 Total : 0
 Double Bit
 Device Memory : 0
 Register File : 0
 L1 Cache : N/A
 L2 Cache : 0
 Texture Memory : 0
 Texture Shared : 0
 Total : 0
 Aggregate
 Single Bit
 Device Memory : 0
 Register File : 0
 L1 Cache : N/A
 L2 Cache : 0
 Texture Memory : 0
 Texture Shared : 0
 Total : 0
 Double Bit
 Device Memory : 0
Chapter 6. Cluster monitoring and health checking 305

 Register File : 0
 L1 Cache : N/A
 L2 Cache : 0
 Texture Memory : 0
 Texture Shared : 0
 Total : 0
 Retired Pages
 Single Bit ECC : 0
 Double Bit ECC : 0
 Pending : No
 Temperature
 GPU Current Temp : 38 C
 GPU Shutdown Temp : 85 C
 GPU Slowdown Temp : N/A
 Power Readings
 Power Management : Supported
 Power Draw : 29.58 W
 Power Limit : 300.00 W
 Default Power Limit : 300.00 W
 Enforced Power Limit : 300.00 W
 Min Power Limit : 150.00 W
 Max Power Limit : 300.00 W
 Clocks
 Graphics : 1328 MHz
 SM : 1328 MHz
 Memory : 715 MHz
 Video : 1189 MHz
 Applications Clocks
 Graphics : 1328 MHz
 Memory : 715 MHz
 Default Applications Clocks
 Graphics : 1328 MHz
 Memory : 715 MHz
 Max Clocks
 Graphics : 1480 MHz
 SM : 1480 MHz
 Memory : 715 MHz
 Video : 1480 MHz
 Clock Policy
 Auto Boost : N/A
 Auto Boost Default : N/A
 Processes : None
306 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

To print only specific information about the GPUs, use the -d option with the names of
interesting sections. Example 6-30 shows only the details about temperature, power, and
clocks by using this option.

Example 6-30 Details of GPU by using the -d option

$ nvidia-smi -q -i 1 -d POWER,TEMPERATURE,CLOCK

==============NVSMI LOG==============

Timestamp : Thu Nov 10 22:16:11 2016
Driver Version : 361.93.02

Attached GPUs : 4
GPU 0003:01:00.0
 Temperature
 GPU Current Temp : 34 C
 GPU Shutdown Temp : 85 C
 GPU Slowdown Temp : 82 C
 Power Readings
 Power Management : Supported
 Power Draw : 30.98 W
 Power Limit : 300.00 W
 Default Power Limit : 300.00 W
 Enforced Power Limit : 300.00 W
 Min Power Limit : 150.00 W
 Max Power Limit : 300.00 W
 Power Samples
 Duration : 2.36 sec
 Number of Samples : 119
 Max : 31.00 W
 Min : 30.98 W
 Avg : 30.98 W
 Clocks
 Graphics : 405 MHz
 SM : 405 MHz
 Memory : 715 MHz
 Video : 835 MHz
 Applications Clocks
 Graphics : 1328 MHz
 Memory : 715 MHz
 Default Applications Clocks
 Graphics : 1328 MHz
 Memory : 715 MHz
 Max Clocks
 Graphics : 1480 MHz
 SM : 1480 MHz
 Memory : 715 MHz
 Video : 1480 MHz
 SM Clock Samples
 Duration : 17.33 sec
 Number of Samples : 6
 Max : 1328 MHz
 Min : 405 MHz
 Avg : 1288 MHz
 Memory Clock Samples
Chapter 6. Cluster monitoring and health checking 307

 Duration : 17.33 sec
 Number of Samples : 6
 Max : 715 MHz
 Min : 715 MHz
 Avg : 715 MHz
 Clock Policy
 Auto Boost : N/A
 Auto Boost Default : N/A

If you want to log the data, the --query-gpu option is available, which takes a
comma-separated list of properties. In combination with --format=csv,nounits -f
<path_to_csv>, it writes the output to a .csv file. Adding -l 10 results in data collection each
10 seconds, as shown in Example 6-31. Then, this file can be used to draw graphs or report
statistics.

For a list of all available data fields, run the nvidia-smi --help-query-gpu command.

Example 6-31 Getting .csv of GPU performance data

$ nvidia-smi
--query-gpu=timestamp,index,temperature.gpu,power.draw,clocks.gr,clocks.mem
--format=csv,nounits -f /tmp/gpu.csv -l 10
^C
$ cat /tmp/gpu.csv
timestamp, index, temperature.gpu, power.draw [W], clocks.current.graphics [MHz],
clocks.current.memory [MHz]
2016/11/10 22:27:55.718, 0, 35, 30.00, 405, 715
2016/11/10 22:27:55.721, 1, 34, 30.98, 405, 715
2016/11/10 22:27:55.724, 2, 38, 30.48, 405, 715
2016/11/10 22:27:55.726, 3, 32, 29.48, 405, 715
2016/11/10 22:28:05.730, 0, 35, 29.98, 405, 715
2016/11/10 22:28:05.733, 1, 34, 30.98, 405, 715
2016/11/10 22:28:05.735, 2, 38, 30.48, 405, 715
2016/11/10 22:28:05.738, 3, 33, 29.48, 405, 715

6.4.3 Compute modes

The nvidia-smi command can change compute modes of GPUs by using following
command:

nvidia-smi -i <GPU_number> -c <compute_mode>

NVIDIA GPUs support the following compute modes:

� PROHIBITED: The GPU cannot compute applications and no contexts are allowed.

� EXCLUSIVE_THREAD: Only one process can be assigned to the GPU at a time and
perform work from only one thread of this process.

� EXCLUSIVE_PROCESS: Only one process can be assigned to the GPU at a time and
different process threads can submit jobs to the GPU concurrently.

� DEFAULT: Multiple processes can use the GPU simultaneously and different process
threads can submit jobs to the GPU concurrently.
308 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

6.4.4 Persistence mode

Persistence mode is a mode of the NVIDIA driver that helps to keep GPU initialized, even
when no processes are accessing the cards. This mode requires more power, but shortens
delays that occur at each start of GPU jobs. It is useful when you have a series of short runs.

To enable persistence mode for all GPUs, use following command:

nvidia-smi -pm 1

After the command is issued, you get the output for your system as shown in Example 6-32.

Example 6-32 Enable persistence mode for all GPUs

$ nvidia-smi -pm 1
Enabled persistence mode for GPU 0000:03:00.0.
Enabled persistence mode for GPU 0000:04:00.0.
Enabled persistence mode for GPU 0002:03:00.0.
Enabled persistence mode for GPU 0002:04:00.0.
All done.

To enable persistence mode only for a specific GPU, use the -i option. Example 6-33 shows
how to enable this mode for the first GPU.

Example 6-33 Enable persistence mode for specific GPU

$ nvidia-smi -i 0 -pm 1
Enabled persistence mode for GPU 0000:03:00.0.
All done.

To disable persistence mode for all or a specific GPU, use the 0 value for the -pm option as
shown in Example 6-34.

Example 6-34 Disable persistence mode for all or specific GPU

$ nvidia-smi -pm 0
Disabled persistence mode for GPU 0000:03:00.0.
Disabled persistence mode for GPU 0000:04:00.0.
Disabled persistence mode for GPU 0002:03:00.0.
Disabled persistence mode for GPU 0002:04:00.0.
All done.

$ nvidia-smi -i 0 -pm 0
Disabled persistence mode for GPU 0000:03:00.0.
All done.

The NVIDIA Persistence Daemon also is available. This daemon is used if you want to use a
persistence state in production. For more information, see the Persistence Daemon section of
the NVIDIA GPU Management and Deployment website.
Chapter 6. Cluster monitoring and health checking 309

https://docs.nvidia.com/deploy/driver-persistence/#persistence-daemon
https://docs.nvidia.com/deploy/driver-persistence/#persistence-daemon
https://docs.nvidia.com/deploy/driver-persistence/#persistence-daemon
https://docs.nvidia.com/deploy/driver-persistence/#persistence-daemon

6.4.5 More information

Another useful nvidia-smi command option is the topo option, which when used with the -m
flag shows topological information about the system, as shown in Example 6-35.

Example 6-35 Show system topology

$ nvidia-smi topo -m
GPU0 GPU1 GPU2 GPU3 mlx5_0 mlx5_1 CPU Affinity

GPU0 X NV2 SOC SOC SOC SOC 0-79
GPU1 NV2 X SOC SOC SOC SOC 0-79
GPU2 SOC SOC X NV2 SOC SOC 80-159
GPU3 SOC SOC NV2 X SOC SOC 80-159
mlx5_0 SOC SOC SOC SOC X PIX
mlx5_1 SOC SOC SOC SOC PIX X

Legend:

 X = Self
 SOC = Connection traversing PCIe as well as the SMP link between CPU
sockets(for example, QPI)
 PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the
CPU)
 PXB = Connection traversing multiple PCIe switches (without traversing the PCIe
Host Bridge)
 PIX = Connection traversing a single PCIe switch
 NV# = Connection traversing a bonded set of # NVLinks

For more information about the options of the nvidia-smi command, see NVIDIA’s nvidia-smi
- NVIDIA System Management Interface program documentation.

6.5 Diagnostic and health check framework

The Diagnostic and health check framework that is provided by IBM is an application that
examines the hardware and organizes the results. This process is done by running various
tests across multiple nodes simultaneously and analyzing the resulting errors and data.

The framework is configuration file-driven and easily customized and extended. The
framework uses xCAT to communicate with the remote nodes. The framework is in
development (more checks will follow soon) and some features that are described in this
section can change in the future.

Note: The framework is part of Cluster System Management (CSM), which is an entire
software stack that was developed for the Department of Energy’s Coral project to manage
and administer an HPC cluster. By default, the framework uses some of CSM’s features to
check the node health and save the result in the CSM database.

Not every user runs a CSM environment; therefore, it can be used without CSM. Instead of
writing the results to the database, it writes to a log file. Also, users must ensure that
intrusive tests do not interfere with user jobs.

For more information about how to configure the framework in stand-alone mode, see
6.5.2, “Configuration” on page 312.
310 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf

Before describing the functional flow of the diagnostic framework, consider the following
definitions:

� Test

A single executable file that is running on a single or multiple nodes that exercises one
portion of the system.

� Test Group

An abstract collection of test cases that are based on specific hardware coverage; for
example, memory, processor, GPU, and network.

� Test Bucket

A collection of test cases that is configured per some principle. For example, a bucket
might be based on node health. Alternatively, it might be based on the thoroughness of the
health check or in the network stress it provides. A test bucket often contains multiple test
groups.

The diagnostic and health check framework can run on the following types of tests:

� Non-intrusive tests

These tests query information about hardware components, their configuration, and
status. These nonintrusive tests are run at system installation, upgrade, and periodically to
ensure that no unexpected system changes occur. These tests can run in parallel with
user jobs and are intended to monitor the status of hardware and software.

� Intrusive tests

These tests must run dedicated. These test also cannot run in parallel with user jobs, must
be properly marked, and are not used for scheduled jobs. It is recommended that these
tests run at initial system installation and whenever a system change is made, such as a
software or hardware upgrade, to spot possible performance problems.

6.5.1 Installation

The diagnostic and health check framework is provided as an RPM package. It contains the
framework and some predefined tests. The tests might need to be customized. We assume
default directories for tests that start scripts/binaries installed by third-party RPMs that might
not match the user installation.

Because some tests must run as non-root user, we recommend the use of a non-root user to
run diagnostic tests constantly. A non-root user can be configured to run Diagnostics. For
more information, see the Granting Users xCAT Privileges page of the xCAT documentation
website.

Download the RPM and install it by using the following command on the management node
and all compute nodes you want to check:

$ rpm -ihv ibm-csm-hcdiag-0.1.1-1.noarch.rpm

It might be a good idea to add the hcdiag_run.py binary to your $PATH variable for easier
access. One way to add this binary is to create a symbolic link in /usr/local/bin:

$ ln -s /opt/ibm/csm/hcdiag/bin/hcdiag_run.py /usr/local/bin/hcdiag_run

Note: It does not make sense to include the hcdiag_query.py script if you do not use a
CSM database because this script does not work without such a database.
Chapter 6. Cluster monitoring and health checking 311

https://xcat-docs.readthedocs.io/en/latest/advanced/security/security.html?highlight=granting#granting-users-xcat-privileges

To validate your basic installation run the following command:

$ hcdiag_run --test test_simple --target <nodename> --nocsm
Health Check Diagnostics version beta1, running on Linux
3.10.0-481.el7.ppc64le, p8r1n1 machine.
Using configuration file /opt/ibm/csm/hcdiag/etc/hcdiag.properties.
Using tests configuration file /opt/ibm/csm/hcdiag/etc/test.properties.
Health Check Diagnostics, run id 1703071647072233, initializing...
[...]
test_simple PASS on 1 node(s):
c931f04p32
===
Health Check Diagnostics ended at 2017-03-07-16:47:11.098701, exit code 0.

Installing more RPMs
Some tests need more binaries to perform their tasks. The following RPMs must be installed
on the compute nodes to run all tests:

� IBM Spectrum MPI, IBM ESSL, and IBM XL Fortran (installed automatically)
� CUDA (installed automatically) and Data Center GPU Manager package
� HTX package

6.5.2 Configuration

Two important subdirectories are available in the hcdiag installation directory
/opt/ibm/csm/hcdiag on the management node, as shown in Example 6-36. Consider the
following points:

� All configuration files are in the etc subdirectory
� All health and diagnostic test scripts are in the tests subdirectory

Example 6-36 Relative directory structure of /opt/ibm/csm/hcdiag directory

••• etc
• ••• hcdiag.properties
• ••• test.properties
• ••• threshold.properties (not used yet)
••• tests
 ••• daxpy
 ••• dcgm-diag
 ••• dgemm
 ••• jlink
 ••• nvvs
 ••• ppping
 ••• README
 ••• test_2
 ••• test_simple

All configuration files use the following format:

[Section1]
key1 = value
key2 = value2

[tests.test1]
key1 = value
312 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

https://developer.nvidia.com/data-center-gpu-manager-dcgm
https://github.com/open-power/HTX
https://github.com/open-power/HTX
https://developer.nvidia.com/data-center-gpu-manager-dcgm

The global configuration file is called hcdiag.properties. The default settings can be used for
standard xCAT installations.

One important parameter is the xcat_fanout parameter. It configures the number of
concurrent remote shell command processes (default is 64). For clusters with more than 64
nodes per service node, you can increase this number to run checks faster. IBM intends to
release a configuration option to disable the CSM functions globally.

Another important setting in the hcdiag.propeties file is the variable csm. If set to yes, the
framework runs with the CSM environment, unless it is overwritten by command line. If set to
no, the framework runs with no chasm environment, unless it is overwritten by command line.
The default value is yes. Therefore, if you do not have a CSM environment, you must change
this default value to no.

The test.properties configuration file configures all available tests, test groups, and
buckets. Example 6-37 shows some examples for each category.

The following attributes are valid for the [tests] section:

� description: Short description of the test (documentation only).

� group: Group to which the test belongs.

� timeout: Time (in seconds) that xCAT waits for output from any running remote targets.
Default is 10 seconds.

� target: The type of the node to which the test applies. Valid values are compute and
management.

� executable: The full path of the executable file. This attribute is a mandatory.

� args: Arguments for the executable file, if any.

� cluster: Test tells the framework if this test is a single node test or a cluster test.

The [bucket] section features the following attributes:

� description: A short description of the bucket.
� tests: A comma-separated list of the tests that are part of the bucket.

Example 6-37 The test.properties cfg file

[tests.daxpy]
description = DAXPY measures aggregate memory bandwidth in MB/s.
executable = /opt/ibm/csm/hcdiag/tests/daxpy/daxpy.sh
group = memory
timeout = 100
targetType = Compute

[...]

[bucket.performance]
description = A default set of tests designed to provide comprehensive performance
test.
tests = dgemm, daxpy, jlink

As shown in Example 6-37, the test group does not have its own section. The group keyword
of the [tests.testname] sections defines available test groups. You can add your own tests,
test groups, and buckets to this file or edit existing files. If you want to add your own tests, you
must configure those tests in this file.
Chapter 6. Cluster monitoring and health checking 313

6.5.3 Usage

Example 6-38 shows the use of the hcdiag_run.py command. The most important arguments
are marked in bold.

Example 6-38 The hcdiag_run.py --help output

$ hcdiag_run --help
usage: hcdiag_run [-h]
 (--test t [t ...] | --bucket b | --list item [item ...])
 [--target n [n ...]] [--noallocation] [--nocsm]
 [--fanout fanout_value] [--diagproperties filename]
 [--testproperties filename] [--thresholdproperties filename]
 [--logdir dir] [--stoponerror action] [-v level]

optional arguments:
 -h, --help show this help message and exit
 --test t [t ...] test to run
 --bucket b, -b b bucket to run
 --list item [item ...], -l item [item ...]
 list available: test, group, bucket | all
 --target n [n ...], -t n [n ...]
 target on which to run health check/diagnostic
 --noallocation do not allocate the target nodes
 --nocsm do not allocate the target nodes
 --fanout fanout_value, -f fanout_value
 maximum number of concurrent remote shell command
 processes
 --diagproperties filename
 diag properties file
 --testproperties filename
 test properties file
 --thresholdproperties filename
 threshold properties file
 --logdir dir root directory for the log files
 --stoponerror action define action if test fail {no: continue, node: stop
 at node level, system: stop the run}
 -v level, --verbose level
 output verbosity {debug, info, warn, error, critical}

To run a test, you specify the test or bucket (multiple tests) name tat you want to run with a
xCAT node range, as shown in Example 6-39. The framework outputs a run ID, some
information about the nodes, and the result summary. The output is saved to the logdir as
configured in hcdiag.properties file (default is /tmp). For a more detailed test result, you can
review the run ID directory as shown in Example 6-39.

Example 6-39 Run of a simple non-intrusive test on two nodes

$ hcdiag_run --test test_memsize --target p8r1n1,p8r1n2 --nocsm
[...]
Health Check Diagnostics, run id 1703081638126144, initializing...
[...]
test_memsize PASS on node p8r1n1, serial number: XXXXXXX.

Note: The hcdiag_query.py command cannot be used without a CSM database.
314 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

test_memsize PASS on node p8r1n2, serial number: XXXXXXX.

=============================== Results summary ===============================

16:38:13 ===

test_memsize PASS on 2 node(s):

c931f04p32,c931f04p34
==

$ cat /tmp/1703081638126144/test_memsize/*
 MemTotal of 251GB is greater or equal to 250GB
 ./test_memsize.sh test PASS, RC=0
 Remote_command_rc = 0
 MemTotal of 251GB is greater or equal to 250GB
 ./test_memsize.sh test PASS, RC=0
 Remote_command_rc = 0

If the test is visible to the target (framework is installed on a shared file system), the
framework runs it. If the test is not visible to the target, the framework copies it to the target
before running it. Other binaries, such as HTX, dgemm, or daxpy, are run from the binary
installation directory that is on the target node.

6.5.4 Adding tests

Adding your own tests to the framework is an easy process. In this section, we describe how
to add your own simple system memory size test.

Each test must have its own subdirectory. The name of the subdirectory must match the
name of the test in the tests.properties file. The test can be a script or some executable
binary. The return code of the test script determines whether the test passed (RC == 0) or
failed (RC != 0). The output is irrelevant because you can output anything you decide.

For example, our new test is called test_memsize., as shown in Example 6-40.

Example 6-40 test_memsize.sh

#!/bin/bash
check MemTotal in GB

readonly TESTNAME=$0

[$# -ne 1] && echo "Usage: $TESTNAME <total memsize in GB>" && exit
readonly EXPECTED_MEMSIZE=$1

memsize_gb=$(awk '/^MemTotal:/{printf "%d",$2/1048576}' /proc/meminfo)

if [$memsize_gb -ge $EXPECTED_MEMSIZE]; then
 rc=0
 echo "MemTotal of ${memsize_gb}GB is greater or equal to
${EXPECTED_MEMSIZE}GB"
 echo "$TESTNAME test PASS, RC=$rc"
else
 rc=1
Chapter 6. Cluster monitoring and health checking 315

 echo "MemTotal of ${memsize_gb}GB is less than expected
${EXPECTED_MEMSIZE}GB"
 echo "$TESTNAME test FAIL, RC=$rc"
fi

exit $rc

First, we must create the test in the test_memsize directory called test_memsize:

cd /opt/ibm/csm/hcdiag/tests
mkdir test_memsize
vi test_memsize/test_memsize.sh # see Example 6-40

chmod +x test_memsize/test_memsize.sh

Then, we add an entry for the test in the tests.properties file with the wanted argument
(expected minimum memory size in GB):

[tests.test_memsize]
description = This tests checks the available system memory size
executable = /opt/ibm/csm/hcdiag/tests/test_memisze/test_memsize.sh
args = 250

Now, the new test can run, as shown in Example 6-39 on page 314.
316 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Part 3 Evaluation and system
planning guide

This part provides the developers, architects, and IT decision makers with information about
how to understand the software and hardware components of a high-performance computing
solution.

The part also provides a chapter to help the readers evaluate and plan the system role out.

The following chapters are included in this part:

� Chapter 7, “Hardware components” on page 319
� Chapter 8, “Software stack” on page 351

Part 3
© Copyright IBM Corp. 2017. All rights reserved. 317

318 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Chapter 7. Hardware components

The IBM Power System S822LC for High Performance Computing (HPC) server (8335-GTB)
is the first Power Systems offering with NVIDIA NVLink Technology. It removes GPU
computing bottlenecks by employing the high-bandwidth and low-latency NVLink interface
from CPU-to-GPU and GPU-to-GPU. This configuration unlocks new performance abilities
and applications for accelerated computing.

Power System LC servers are products of a codesign with OpenPOWER Foundation
ecosystem members. The S822LC for HPC server innovation partners includes IBM, NVIDIA,
Mellanox, Canonical, Wistron, and other partners.

In this chapter, we describe these hardware components.

This chapter includes the following topics:

� 7.1, “Server features” on page 320
� 7.2, “NVIDIA Tesla P100” on page 324
� 7.3, “Operating environment” on page 325
� 7.4, “Physical package” on page 326
� 7.5, “System architecture” on page 327
� 7.6, “POWER8 processor” on page 329
� 7.7, “Memory subsystem” on page 335
� 7.8, “POWERAccel” on page 338
� 7.9, “System bus” on page 342
� 7.10, “PCI adapters” on page 343
� 7.11, “System ports” on page 345
� 7.12, “Internal storage” on page 346
� 7.13, “External I/O subsystems” on page 348
� 7.14, “Mellanox InfiniBand” on page 349
� 7.15, “IBM System Storage” on page 349

7

© Copyright IBM Corp. 2017. All rights reserved. 319

7.1 Server features

The S822LC for HPC server offers a modular design to scale from single racks to hundreds of
racks, simplify of ordering, and provide a strong innovation road map for GPUs. The server
offers two processor sockets for a total of 16 cores at 3.259 GHz or 20 cores at 2.860 GHz in
a 19-inch rack-mount, 2U (EIA units) drawer configuration. All of the cores are activated.

Figure 7-1 shows the front view of an S822LC for HPC server.

Figure 7-1 Front view of the S822LC for HPC server

The server chassis contains two processor modules that are attached directly to the board.
Each POWER8 processor module can have up to 12 cores and has a 64-bit architecture, up
to 512 KB of L2 cache per core, and up to 8 MB of L3 cache per core. Clock speeds of 3.259
GHz or 2.860 GHz are available.

The S822LC for HPC server provides eight dual inline memory module (DIMM) memory slots.
Memory features that are supported are 16 GB (#EM55), 32 GB (#EM56), 64 GB (#EM57),
and 128 GB (#EM58), which allows for a maximum of 1024 GB DDR4 system memory.
Memory operates at the double data rate type four (DDR4) data rate.

Figure 7-2 shows the physical locations of the main server components.

Figure 7-2 Location of server main components

The server supports four NVIDIA Tesla P100 GPU (#EC4C, #EC4D, or #EC4F), based on the
NVIDIA SXM2 form factor connectors. The features are first-pair air cooled, second-pair air
cooled, and water cooled (all four GPUs require #ER2D).

Power 8 with NVLink (2x)
• 190W
• Integrated NVLink 1.0

Memory DIMM’s Riser (8x)
• 4 IS DDR4 DIMMs per riser
• Single Centaur per riser
• 32 IS DIMM’s total
• 32-1024 GB memory capacity

PCIe slot (1x)
• Gen3 PCIe
• HHHL Adapter
• x16 CAPI

PCIe slot (2x)
• Gen3 PCIe
• HHHL Adapter
• (1) x16 CAPI + (1) x8 CAPI

NVIDIA® GPU
• SXM2 form factor
• NVLink 1.0
• 300 W
• Max of 2 per socket

Power Supplies (2x)
• 1300W
• Common Form Factor Supply

Cooling Fans (4x)
• 80mm Counter- Rotating Fans
• Hot swap

Storage Option (2x)
• 0-2, SATA HDD.SSD
• Integrated RAID 0, 1, 10
• Tray design for install/removal
• Hot Swap

Operator Interface (behind bezel)
• 1 USB 2.0
• Green, Amber, Blue LED’s

Front Bezel
320 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

The S822LC for HPC server (8355-GTB) includes the following standard features:

� 19-inch rack-mount (2U) chassis

� Two POWER8 processor modules:

– 10-core 3.259 GHz processor module
– 12-core 2.860 GHz processor module
– Up to 1024 GB of 1333 MHz DDR4 error correction code (ECC) memory

� Two small form factor (SFF) bays for two hard disk drives (HDDs) or two solid-state drives
(SSDs) that support:

– Two 1 TB 7200 RPM NL Serial Advanced Technology Attachment (SATA) disk drives
(#ELD0)

– Two 2 TB 7200 RPM NL SATA disk drives (#ES6A)

– Two 480 GB SATA SSDs (#ELS5)

– Two 960 GB SATA SSDs (#ELS6)

– Two 1.92 TB SATA SSDs (#ELSZ)

– Two 3.84 TB SATA SSDs (#ELU0)

� Integrated SATA controller

� Three Peripheral Component Interconnect Express (PCIe) Gen 3 slots:

– One PCIe x8 Gen3 Low Profile slot, Coherent Accelerator Processor Interface (CAPI)
enabled

– Two PCIe x16 Gen3 Low Profile slot, CAPI enabled

� Four NVIDIA Tesla P100 GPU (#EC4C, #EC4D, or #EC4F), based on the NVIDIA SXM2
form factor connectors

� Integrated features:

– IBM EnergyScale™ technology
– Hot-swap and redundant cooling
– One front USB 2.0 port for general use
– One rear USB 3.0 port for general use
– One system port with RJ45 connector

� Two power supplies

7.1.1 Minimum features

The minimum initial order for the S822LC for HPC server (8355-GTB) must include the
following minimum features:

� Two processor modules with at least 20 cores
� 128 GB of memory (eight 16 GB memory DIMMs)
� Two #EC4C compute-intensive accelerators (NVIDIA GP100)
� Two power supplies and power cords
� An operating system indicator
� A rack integration indicator
� A Language Group Specify

Note: A Hardware Management Console is not supported on the S822LC for HPC server
(8335-GTB).
Chapter 7. Hardware components 321

Linux is the supported operating system. The Integrated 1 Gb Ethernet port can be used as
the base LAN port.

7.1.2 System cooling

Air or water cooling depends on the GPU that is installed.

To order water cooled, feature #ER2D must be selected as the initial order. Otherwise, the
server is built to be air cooled.

Cold plates to cool two processor modules and four GPUs, such as #EC4F, are included.
Water lines carrying cool water in and warm water out are also included. This feature is
installed in the system unit when the server is manufactured and is not installed in the field.

When shipped from IBM, an air-cooled server cannot be changed into a water-cooled server;
and a water-cooled server cannot be changed into an air-cooled server.

Customer setup is not supported for water-cooled systems.

The GPU air-cooled and water-cooled servers have the following ordering differences:

� With an air-cooled server, an initial order can be ordered with two GPUs (quantity of two of
feature #EC4C and a quantity of zero of feature #EC4D) or four GPUs (quantity of two of
feature #EC4C plus a quantity of two of feature #EC4D).

� With a water-cooled server (#ER2D), a quantity of four feature #EC4F GPUs must be
ordered.

Rack requirement: The IBM 7965-94Y rack with feature #ER22 or #ER23 installed
supports the water cooling option for the S822LC for HPC server.
322 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Figure 7-3 shows a server with water-cooled GPUs.

Figure 7-3 S822LC for HPC server with water-cooled GPU

For more information about the water cooling option, see the Model 8335-GTB water cooling
option (Feature code E2RD) page of the IBM Knowledge Center website.

Note: If #ER2D is ordered, you must order a #EJTX fixed rail kit. Ordering #ER2D with
#EJTY slide rails is not supported.
Chapter 7. Hardware components 323

http://www.ibm.com/support/knowledgecenter/POWER8/p8had/p8had_83x_watercool.htm
http://www.ibm.com/support/knowledgecenter/POWER8/p8had/p8had_83x_watercool.htm

7.2 NVIDIA Tesla P100

NVIDIA’s new NVIDIA Tesla P100 accelerator (see Figure 7-4) takes GPU computing to the
next level. This section describes the Tesla P100 accelerator.

Figure 7-4 NVIDIA Tesla P100 accelerator

The Tesla P100 is the most powerful and the most architecturally complex GPU accelerator
architecture ever built. It has a 15.3 billion transistor GPU, a new high-performance
interconnect that greatly accelerates GPU peer-to-peer and GPU-to-CPU communications,
new technologies to simplify GPU programming, and exceptional power efficiency.

The Tesla P100 includes the following key features:

� Extreme performance

Powering high-performance computing, deep learning, and many more GPU computing
areas.

� NVLink

NVIDIA’s new high-speed, high-bandwidth interconnect for maximum application
scalability.

� HBM2

Fast, high-capacity, extremely efficient chip-on-wafer-on-substrate (CoWoS) stacked
memory architecture.
324 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

� Unified memory, compute preemption, and new artificial intelligence (AI) algorithms

Significantly improved programming model and advanced AI software that is optimized for
the Pascal architecture.

� 16 nm FinFET

Enables more features, higher performance, and improved power efficiency.

The Tesla P100 is built to deliver exceptional performance for the most demanding compute
applications. It delivers the following performance benefits:

� 5.3 TFLOPS of double-precision floating point (FP64) performance
� 10.6 TFLOPS of single-precision (FP32) performance
� 21.2 TFLOPS of half-precision (FP16) performance

In addition to the numerous areas of HPC that NVIDIA GPUs accelerated for years, deep
learning became an important area of focus for GPU acceleration. NVIDIA GPUs are at the
forefront of deep neural networks (DNNs) and AI. They are accelerating DNNs in various
applications by a factor of 10x to 20x, compared to CPUs and reducing training times from
weeks to days.

In the past three years, NVIDIA GPU-based computing platforms helped speed up deep
learning network training times by a factor of 50x. In the past two years, the number of
companies NVIDIA collaborates with on deep learning increased nearly 35x to over 3,400
companies.

Innovations in the Pascal architecture, including native 16-bit floating point (FP) precision,
allow GP100 to deliver great speedups for many deep learning algorithms. These algorithms
do not require high levels of FP precision, but they gain large benefits from the additional
computational power that FP16 affords and from the reduced storage requirements for 16-bit
data types.

For more information, see the NVIDA Tesla P100 website.

7.3 Operating environment

Table 7-1 lists the operating environment specifications for the S822LC for HPC server.

Table 7-1 Operating environment for the S822LC for HPC server

Server operating environment

Description Operating Non-operating

Temperature Allowable: 5 - 40°Ca
(41 - 104°F)
Recommended: 18 - 27 °C
(64 - 80 °F)

1 - 60°C
(34 - 140°F)

Relative humidity 8 - 80% 8 - 80%

Maximum dew point 24°C (75° F) 27°C (80°F)

Operating voltage 200 - 240 V AC N/A

Operating frequency 50 - 60 Hz +/- 3 Hz N/A

Power consumption 2550 watts maximum N/A

Power source loading 2.6 kVA maximum N/A
Chapter 7. Hardware components 325

https://devblogs.nvidia.com/parallelforall/inside-pascal/
https://devblogs.nvidia.com/parallelforall/inside-pascal/

7.4 Physical package

Table 7-2 lists the physical dimensions of the chassis. The server is available only in a
rack-mounted form factor and requires 2U (2 EIA units) of rack space.

Table 7-2 Physical dimensions for the S822LC for HPC server

Thermal output 8703 BTU/hr maximum N/A

Maximum altitude 3050 m
(10,000 ft.)

N/A

Noise level and sound power 7.6/6.7 bels operating/idling N/A

a. Heavy workloads might see some performance degradation above 35°C if internal
temperatures trigger a CPU clock reduction.

Tip: The maximum measured value is expected from a fully populated server under an
intensive workload. The maximum measured value also accounts for component tolerance
and operating conditions that are not ideal.

Power consumption and heat load vary greatly by server configuration and usage. Use the
IBM Systems Energy Estimator to obtain a heat output estimate that is based on a specific
configuration.

Server operating environment

Description Operating Non-operating

Dimension S822LC for HPC server (8335-GTB)

Width 441.5 mm (17.4 in.)

Depth 822 mm (32.4 in.)

Height 86 mm (3.4 in.)

Weight (maximum configuration) 30 kg (65 lbs.)
326 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www-912.ibm.com/see/EnergyEstimator
http://www-912.ibm.com/see/EnergyEstimator

7.5 System architecture

The bandwidths that are provided throughout the section are theoretical maximums that are
used for reference. The speeds that are shown are at an individual component level. Multiple
components and application implementation are key to achieving the preferred performance.
Always assess the performance sizing at the application-workload environment level and
evaluate performance by using real-world performance measurements and production
workloads.

The S822LC for HPC server is a two single-chip module (SCM) system. Each SCM is
attached to four memory riser cards that have buffer chips for the L4 cache and four memory
RDIMM slots. The server has a maximum capacity of 32 memory DIMMs when all the
memory riser cards are populated, which allows for up to 1024 GB of memory.

The server has a total of three PCIe Gen3 slots; all of these slots are CAPI-capable. The
system has sockets for four GPUs, each 300 Watt capable.

An integrated SATA controller is fed through a dedicated PCI bus on the main system board
and allows for up to two SATA HDDs or SSDs to be installed. This bus also drives the
integrated Ethernet and USB port.
Chapter 7. Hardware components 327

Figure 7-5 shows the logical system for the S822LC for HPC server.

Figure 7-5 S822LC for HPC server logical system

B
u

ffer C
a

che
 L

4

R
D

IM
M

R
D

IM
M

R
D

IM
M

R
D

IM
M

B
uffer C

a
c he L4

R
D

IM
M

R
D

IM
M

R
D

IM
M

R
D

IM
M

B
uffer C

ach
e L

4

R
D

IM
M

R
D

IM
M

R
D

IM
M

R
D

IM
M

B
uffe

r C
ach

e L4

R
D

IM
M

R
D

IM
M

R
D

IM
M

R
D

IM
M

B
uffe

r C
ach

e
 L

4

R
D

IM
M

R
D

IM
M

R
D

IM
M

R
D

IM
M

B
u

ffe
r C

ache
 L4

R
D

IM
M

R
D

IM
M

R
D

IM
M

R
D

IM
M

B
u

ffe r C
ache

 L
4

R
D

IM
M

R
D

IM
M

R
D

IM
M

R
D

IM
M

B
u

ffer C
a

che
 L

4

R
D

IM
M

R
D

IM
M

R
D

IM
M

R
D

IM
M

P
H

B
 0

P
H

B
 1

S
M

P
 A

 B
u

s

Memory
Controller

P
H

B
 0

P
H

B
 1

P
C

Ie
 G

e
n3

 x8
 -

C
A

P
I supp

ort

P
C

Ie
 G

en
3 x16

 -
C

A
P

I su
pp

ort

P
C

I e G
e

n
3

 x16
 -

C
A

P
I su

p
p

o
rt

SATA
Controller

SFF-4
HDD/
SSD

USB 3.0
Front

USB 3.0
Rear

VGA

Management

1 Gbps
Ethernet

System Planar

38.4 Total

28.8 GBps

x8x16

x8 x16

POWER8
SCM0

POWER8
SCM1

SFF-4
HDD/
SSD

PLX

Memory
Controller

Memory
Controller

Memory
Controller

S
M

P
 A

 B
us

N
V

L
in

k

N
V

L
in

k

N
V

Lin
k

N
V

L
in

k

N
V

ID
IA

 P
10

0

S
X

M
 2.0

N
V

ID
IA

 P
10

0

S
X

M
 2.0

N
V

ID
IA

 P
100

S
X

M
 2.0

N
V

ID
IA

 P
100

S
X

M
 2.0

S
M

P
 A

 B
u

s

S
M

P
 A

 B
u

s

S
M

P
 X

 B
u

s

S
M

P
 X

 B
u

s

328 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

7.6 POWER8 processor

This section introduces the latest processor in the Power Systems product family and
describes its main characteristics and features in general.

The POWER8 processor in the S822LC for HPC server is unique to the 8335-GTB model. By
removing the A-bus interfaces along with SMP over PCI support, space is available for the
NVLink interface. The resulting chip grows slightly from 649 mm2 to 659 mm2.
Socket-to-socket communication is provided through an SMP A-bus.

7.6.1 POWER8 processor overview

The POWER8 processor used in the 8335-GTB is manufactured by using the IBM 22 nm
silicon-on-insulator (SOI) technology. Each chip is 65 mm2 and contains over 4.2 billion
transistors. The POWER8 chip can contain up to 12 cores, 2 memory controllers, PCIe Gen3
I/O controllers, and an interconnection system that connects all components within the chip.
Each core has 512 KB of L2 cache, and all cores share 96 MB of L3 embedded DRAM
(eDRAM). The interconnect also extends through module and system board technology to
other POWER8 processors in addition to DDR4 memory and various I/O devices.

POWER8 processor-based systems use memory buffer chips to interface between the
POWER8 processor and DDR4 memory. Each buffer chip also includes an L4 cache to
reduce the latency of local memory accesses.

The following features augment the performance of the POWER8 processor:

� Support for DDR4 memory through memory buffer chips that offload the memory support
from the POWER8 memory controller.

� An L4 cache within the memory buffer chip that reduces the memory latency for local
access to memory behind the buffer chip; the operation of the L4 cache is not apparent to
applications that are running on the POWER8 processor. Up to 128 MB of L4 cache can
be available for each POWER8 processor.

� Hardware transactional memory.

� On-chip accelerators, including on-chip encryption, compression, and random number
generation accelerators.

� CAPI, which allows accelerators that are plugged into a PCIe slot to access the processor
bus by using a low-latency, high-speed protocol interface.

� Adaptive power management.

Table 7-3 lists the technology characteristics of the POWER8 processor.

Table 7-3 Summary of POWER8 processor technology

Technology 8335-GTB POWER8 processor

Die size 659 mm2

Fabrication technology � 22 nm lithography
� Copper interconnect
� SOI
� eDRAM

Maximum processor cores 12

Maximum execution threads core/chip 8/96
Chapter 7. Hardware components 329

Figure 7-6 shows the areas of the processor that were modified to include the NVLink and
more CAPI interface.

Figure 7-6 Areas modified on the POWER8 processor core

7.6.2 POWER8 processor core

The POWER8 processor core is a 64-bit implementation of the IBM Power Instruction Set
Architecture (ISA) Version 2.07 and has the following features:

� Multithreaded design, which is capable of up to eight-way simultaneous multithreading
(SMT)

� 32 KB, eight-way set-associative L1 instruction cache

� 64 KB, eight-way set-associative L1 data cache

� Enhanced prefetch, with instruction speculation awareness and data prefetch depth
awareness

� Enhanced branch prediction, which uses local and global prediction tables with a selector
table to choose the preferred predictor

Maximum L2 cache core/chip 512 KB/6 MB

Maximum On-chip L3 cache core/chip 8 MB/96 MB

Maximum L4 cache per chip 128 MB

Maximum memory controllers 2

SMP design-point 16 sockets with POWER8 processors

Compatibility Specific to the 8335-GTB

Technology 8335-GTB POWER8 processor

2 C4 rows
added

x8 IOP

x8 PHB

NVLink support added in extended ESA-bus removed, NVLink added

Chip height:

2nd CAPP unit added, X2 removed
330 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

� Improved out-of-order execution

� Two symmetric fixed-point execution units

� Two symmetric load/store units and two load units, all four of which can also run simple
fixed-point instructions

� An integrated, multi-pipeline vector-scalar FP unit for running both scalar and SIMD-type
instructions, including the Vector Multimedia eXtension (VMX) instruction set and the
improved Vector Scalar eXtension (VSX) instruction set, and capable of up to eight FP
operations per cycle (four double precision or eight single precision)

� In-core Advanced Encryption Standard (AES) encryption capability

� Hardware data prefetching with 16 independent data streams and software control

� Hardware decimal floating point (DFP) capability

For more information about Power ISA Version 2.07, see the POWER8 Instruction Set
Architecture (ISA) OpenPOWER Profile Workgroup Specification documentation.

Figure 7-7 shows the POWER8 core with some of the functional units highlighted.

Figure 7-7 POWER8 processor core

7.6.3 Simultaneous multithreading

Simultaneous multithreading (SMT) allows a single physical processor core to dispatch
simultaneously instructions from more than one hardware thread context. With SMT, each
POWER8 core can present eight hardware threads. Because there are multiple hardware
threads per physical processor core, more instructions can run at the same time.

SMT is primarily beneficial in commercial environments where the speed of an individual
transaction is not as critical as the total number of transactions that are performed. SMT
typically increases the throughput of workloads with large or frequently changing working
sets, such as database servers and web servers.
Chapter 7. Hardware components 331

http://openpowerfoundation.org/wp-content/uploads/resources/isa-profile/isa-profile-1.0.0-20160217.pdf
http://openpowerfoundation.org/wp-content/uploads/resources/isa-profile/isa-profile-1.0.0-20160217.pdf

Table 7-4 shows a comparison between the different IBM POWER processors’ options for an
S822LC for HPC server and the number of threads that are supported by each SMT mode.

Table 7-4 SMT levels supported by an S822LC for HPC server

The architecture of the POWER8 processor, with its larger caches, larger cache bandwidth,
and faster memory, allows threads to have faster access to memory resources, which results
into a more efficient use of threads. Therefore, POWER8 allows more threads per core to run
concurrently, which increases the total throughput of the processor and system.

7.6.4 Memory access

On the S822LC for HPC server, each POWER8 module has two memory controllers, each
connected to two memory channels. Each memory channel operates at 1600 MHz and
connects to a memory riser card. Each memory riser card has a memory buffer that is
responsible for many functions that were previously on the memory controller, such as
scheduling logic and energy management.

The memory buffer also has 16 MB of L4 cache. The memory riser card also houses four
industry-standard RDIMMs.

Each memory channel can address up to 128 GB. Therefore, the server can address up to
1024 GB (1 TB) of total memory.

Cores per system SMT mode Hardware threads per system

20 Single thread (ST) 20

20 SMT2 40

20 SMT4 80

20 SMT8 160

24 ST 24

24 SMT2 48

24 SMT4 96

24 SMT8 192
332 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Figure 7-8 shows a POWER8 processor that is connected to four memory riser cards and
their components.

Figure 7-8 POWER8 processor that is connected to four memory riser cards

7.6.5 On-chip L3 cache innovation and intelligent cache

The POWER8 processor uses a unique material engineering and microprocessor fabrication
to implement the L3 cache in eDRAM and place it on the processor die. L3 cache is critical to
a balanced design. Also critical to a balanced design is the ability to provide good signaling
between the L3 cache and other elements of the hierarchy, such as the L2 cache or SMP
interconnect.

The on-chip L3 cache is organized into separate areas with differing latency characteristics.
Each processor core is associated with a fast 8 MB local region of L3 cache (FLR-L3), but
also has access to other L3 cache regions as shared L3 cache. Additionally, each core can
negotiate to use the FLR-L3 cache that is associated with another core, depending on
reference patterns. Data can also be cloned to be stored in more than one core’s FLR-L3
cache, depending on reference patterns. This intelligent cache management enables the
POWER8 processor to optimize the access to L3 cache lines and minimize overall cache
latencies.

The innovation of using eDRAM on the POWER8 processor die is significant for the following
reasons:

� Latency improvement

A six-to-one latency improvement occurs by moving the L3 cache on-chip compared to L3
accesses on an external (on-ceramic) Application Specific Integrated Circuit (ASIC).

� Bandwidth improvement

A 2x bandwidth improvement occurs with on-chip interconnect. Frequency and bus sizes
are increased to and from each core.

POWER8
SCM

Memory
Controller

Memory
Controller

Buffer
Chip

Buffer
Chip

Buffer
Chip

16 MB
L4

Cache

Memory
Riser Card 4 x RDIMMs

28.8 GBps
Chapter 7. Hardware components 333

� No off-chip driver or receivers

Removing drivers or receivers from the L3 access path lowers interface requirements,
conserves energy, and lowers latency.

� Small physical footprint

The performance of eDRAM when implemented on-chip is similar to conventional SRAM
but requires less physical space. IBM on-chip eDRAM uses only a third of the components
that conventional SRAM uses, which has a minimum of six transistors to implement a 1-bit
memory cell.

� Low energy consumption

The on-chip eDRAM uses only 20% of the standby power of SRAM.

7.6.6 L4 cache and memory buffer

POWER8 processor-based systems introduce another level in memory hierarchy. The L4
cache is implemented with the memory buffer in the memory riser cards. Each memory buffer
contains 16 MB of L4 cache. On an S822LC for HPC server, you can have up to 128 MB of L4
cache by using all the eight memory riser cards.

Figure 7-9 shows the memory buffer and highlights the 16 MB L4 cache and processor links
and memory interfaces.

Figure 7-9 Memory buffer chip
334 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

7.6.7 Hardware transactional memory

Transactional memory is an alternative to lock-based synchronization. It attempts to simplify
parallel programming by grouping read and write operations and running them as a single
operation. Transactional memory is similar to database transactions, where all shared
memory accesses and their effects are committed together or discarded as a group.

All threads can enter the critical region simultaneously. If there are conflicts in accessing the
shared memory data, threads try accessing the shared memory data again or are stopped
without updating the shared memory data. Therefore, transactional memory is also called a
lock-free synchronization. Transactional memory can be a competitive alternative to
lock-based synchronization.

Transactional memory provides a programming model that simplifies parallel programming. A
programmer delimits regions of code that access shared data and the hardware runs these
regions atomically and in isolation, buffering the results of individual instructions, and trying
execution again if isolation is violated. Generally, transactional memory allows programs to
use a programming style that is close to coarse-grained locking to achieve performance that
is close to fine-grained locking.

Most implementations of transactional memory are based on software. The POWER8
processor-based systems provide a hardware-based implementation of transactional memory
that is more efficient than the software implementations and requires no interaction with the
processor core. This configuration allows the system to operate in maximum performance.

7.7 Memory subsystem

The S822LC for HPC server is a two-socket system that supports two POWER8 SCM
processor modules. The server supports a maximum of 32 DDR4 RDIMMs slots that are
housed in eight memory riser cards.

Memory features equate to a riser card with four memory DIMMs. The following memory
feature codes are supported:

� 16 GB
� 32 GB
� 64 GB
� 128 GB

The memory feature codes run at speeds of 1600 MHz, which allows for a maximum system
memory of 1024 GB.

7.7.1 Memory riser cards

Memory riser cards are designed to house up to four industry-standard DRAM memory
DIMMs and include the following set of components that allow for higher bandwidth and lower
latency communications:

� Memory scheduler

� Memory management; reliability, availability, and serviceability (RAS) decisions and
energy management

� Buffer cache
Chapter 7. Hardware components 335

By adopting this architecture, several decisions and processes regarding memory
optimizations are run outside the processor, which saves bandwidth and allows for faster
processor to memory communications. It also allows for more robust RAS.

Figure 7-10 shows the memory riser card that is available for the S822LC for HPC server and
its location on the server.

Figure 7-10 Memory riser card components and server location

The buffer cache is an L4 cache and is built on eDRAM technology (same as the L3 cache),
which has lower latency than regular SRAM. Each memory riser card has a buffer chip with
16 MB of L4 cache; a fully populated server (two processors and eight memory riser cards)
has 128 MB of L4 cache. The L4 cache performs the following functions that have a direct
effect on performance and realize several benefits for the server:

� Reduces energy consumption by reducing the number of memory requests.

� Increases memory write performance by acting as a cache and by grouping several
random writes into larger transactions.

� Gathers partial write operations that target the same cache block within the L4 cache
before written to memory, becoming a single write operation.

� Reduces latency on memory access. Memory access for cached blocks has up to 55%
lower latency than noncached blocks.

7.7.2 Memory placement rules

Each feature code equates to a riser card with four memory DIMMs. You can order the
following memory feature codes:

� 16 GB DDR4: A riser card with four 4 GB 1600 MHz DDR4 DRAMs (#EM55)
� 32 GB DDR4: A riser card with four 8 GB 1600 MHz DDR4 DRAMs (#EM56)
� 64 GB DDR4: A riser card with four 16 GB 1600 MHz DDR4 DRAMs (#EM57)
� 128 GB DDR4: A riser card with four 32 GB 1600 MHz DDR4 DRAMs (#EM58)

The supported maximum memory is 1024 GB by installing a quantity of eight #EM58
components. For the S822LC for HPC server (8335-GTB), the following requirements apply:

� All the memory modules must be populated

� Memory features cannot be mixed

Connection to system backplane

DDR4 DIMM (4x)

Memory Buffer
336 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

� The base memory is 128 GB with eight 16 GB, 1600 MHz DDR4 memory modules
(#EM55)

� Memory upgrades are not supported

Table 7-5 lists the supported quantities for each memory feature code.

Table 7-5 Supported quantity of feature codes for model 8335-GTB

7.7.3 Memory bandwidth

The POWER8 processor has exceptional cache, memory, and interconnect bandwidths.
Table 7-6 lists the maximum bandwidth estimates for a single core on the server.

Table 7-6 The S822LC for HPC server single-core bandwidth estimates

The bandwidth figures for the caches are calculated as follows:

� L1 cache: In one clock cycle, two 16-byte load operations and one 16-byte store operation
can be accomplished. The value varies depending on the clock of the core, and the
following formulas are used:

– 2.860 GHz Core: (2 × 16 B + 1 × 16 B) × 2.860 GHz = 137.28 GBps
– 3.259 GHz Core: (2 × 16 B + 1 × 16 B) × 3.259 GHz = 156.43 GBps

� L2 cache: In one clock cycle, one 32-byte load operation and one 16-byte store operation
can be accomplished. The value varies depending on the clock of the core, and the
following formulas are used:

– 2.860 GHz Core: (1 × 32 B + 1 × 16 B) × 2.860 GHz = 137.28 GBps
– 3.259 GHz Core: (1 × 32 B + 1 × 16 B) × 3.259 GHz = 156.43 GBps

� L3 cache: One 32-byte load operation and one 32-byte store operation can be
accomplished at half-clock speed. The following formulas are used:

– 2.860 GHz Core: (1 × 32 B + 1 × 32 B) × 2.860 GHz = 183.04 GBps
– 3.259 GHz Core: (1 × 32 B + 1 × 32 B) × 3.259 GHz = 208.57 GBps

Total installed memory

Memory features 128 GB 256 GB 512 GB 1024 GB

16 GB (#EM55) 8

32 GB (#EM56) 8

64 GB (#EM57) 8

128 GB (#EM58) 8

Single core 8335-GTB

2.860 GHz 3.259 GHz

L1 (data) cache 137.28 GBps 156.43 GBps

L2 cache 137.28 GBps 156.43 GBps

L3 cache 183.04 GBps 208.57 GBps
Chapter 7. Hardware components 337

Table 7-7 lists the overall bandwidths for the entire S822LC for HPC server populated with the
two processor modules.

Table 7-7 S822LC for HPC server total bandwidth estimates

Consider the following points:

� Total memory bandwidth

Each POWER8 processor has four memory channels that are running at
9.6 GBps, which is capable of reading 2 bytes and writing 1 byte at a time. The bandwidth
is calculated by using the following formula:

4 channels × 9.6 GBps × 3 bytes = 115.2 GBps per processor module

� SMP interconnect

The POWER8 processors are connected by using an A-bus. The bandwidth is calculated
by using the following formula:

1 A-bus × 8 bytes × 4.8 GHz = 38.4 GBps

� PCIe interconnect: Each POWER8 processor has 32 PCIe lanes that are running at 8
Gbps full-duplex. The bandwidth is calculated by using the following formula:

32 lanes × 2 processors × 8 Gbps × 2 = 128 GBps

7.8 POWERAccel

POWERAccel is an emerging term for a family of technologies that provides high-bandwidth
connections between the processor, memory, and I/O. PCI Express in combination with CAPI
and NVLink provide the foundation for POWERAccel.

For more information about POWERAccel, see the following resources:

� How Power Systems and OpenPOWER enable acceleration
� IBM PowerAccel blog

7.8.1 PCIe

PCIe uses a serial interface and allows for point-to-point interconnections between devices by
using a directly wired interface between these connection points. A single PCIe serial link is a
dual-simplex connection that uses two pairs of wires (one pair for transmit and one pair for
receive) and can transmit only one bit per cycle. These two pairs of wires are called a lane. A
PCIe link can consist of multiple lanes. In these configurations, the connection is labeled as
x1, x2, x8, x12, x16, or x32, where the number is effectively the number of lanes.

Total bandwidths 8335-GTB

20 cores @ 2.860 GHz 16 cores @ 3.259 GHz

L1 (data) cache 2746 GBps 2503 GBps

L2 cache 2746 GBps 2503 GBps

L3 cache 3661 GBps 3337 GBps

Total memory 230 GBps 230 GBps

PCIe interconnect 128 GBps 128 GBps
338 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

https://www.ibm.com/blogs/systems/power-systems-openpower-enable-acceleration/
https://www.ibm.com/blogs/systems/tag/poweraccel/
https://www.ibm.com/blogs/systems/power-systems-openpower-enable-acceleration/
https://www.ibm.com/blogs/systems/tag/poweraccel/

The PCIe interfaces that are supported on this server are PCIe Gen3, which are capable of
16 GBps simplex (32 GBps duplex) on a single x16 interface. PCIe Gen3 slots also support
previous generation (Gen2 and Gen1) adapters, which operate at lower speeds according to
the following rules:

� Place x1, x4, x8, and x16 speed adapters in the same size connector slots first before
mixing adapter speed with connector slot size.

� Adapters with lower speeds are allowed in larger sized PCIe connectors, but larger speed
adapters are not compatible in smaller connector sizes (that is, a x16 adapter cannot be
installed in an x8 PCIe slot connector).

PCIe adapters use a different type of slot than PCI adapters. If you attempt to force an
adapter into the wrong type of slot, you might damage the adapter or the slot.

POWER8-based servers can support the following form factors of PCIe adapters:

� PCIe low profile (LP) cards, which are used with the S822LC for HPC server.

� PCIe full-height and full-high cards, which are designed for the 4 EIA scale-out servers,
such as the Power S824L server.

Before adding or rearranging adapters, use the System Planning Tool to validate the new
adapter configuration. For more information, see the IBM System Planning Tool for POWER
processor-based systems website.

If you are installing a new feature, ensure that you have the software that is required to
support the new feature and determine whether there are update prerequisites to install. For
more information, see the IBM prerequisite website.

The following sections describe the supported adapters and provide tables of feature code
numbers that you can use to order.

7.8.2 CAPI

CAPI defines a coherent accelerator interface structure for attaching special processing
devices to the POWER8 processor bus. The CAPI can attach accelerators that have coherent
shared memory access with the processors in the server and share full virtual address
translation with these processors, which use a standard PCIe Gen3 bus.

Applications can have customized functions in FPGAs and enqueue work requests directly in
shared memory queues to the FPGA. Applications can also have customized functions by
using the same effective addresses (pointers) they use for any threads that are running on a
host processor. From a practical perspective, CAPI allows a specialized hardware accelerator
to be seen as another processor in the system with access to the main system memory and
coherent communication with other processors in the system.

The benefits of using CAPI include the ability to access shared memory blocks directly from
the accelerator, the ability to perform memory transfers directly between the accelerator and
processor cache, and the ability to reduce the code path length between the adapter and the
processors. This reduction in the code path length might occur because the adapter is not
operating as a traditional I/O device, and there is no device driver layer to perform processing.
CAPI also presents a simpler programming model.
Chapter 7. Hardware components 339

http://www.ibm.com/systems/support/tools/systemplanningtool/
http://www.ibm.com/systems/support/tools/systemplanningtool/
https://www-912.ibm.com/e_dir/eServerPreReq.nsf

Figure 7-11 shows a high-level view of how an accelerator communicates with the POWER8
processor through CAPI. The POWER8 processor provides a Coherent Attached Processor
Proxy (CAPP), which is responsible for extending the coherence in the processor
communications to an external device. The coherency protocol is tunneled over standard
PCIe Gen3, effectively making the accelerator part of the coherency domain.

Figure 7-11 CAPI accelerator attached to the POWER8 processor

The accelerator adapter implements the Power Service Layer (PSL), which provides address
translation and system memory cache for the accelerator functions. The custom processors
on the system board, which consist of an FPGA or an ASIC, use this layer to access shared
memory regions, and cache areas as though they were a processor in the system. This ability
enhances the performance of the data access for the device and simplifies the programming
effort to use the device.

Instead of treating the hardware accelerator as an I/O device, it is treated as a processor,
which eliminates the requirement of a device driver to perform communication tasks. It also
eliminates the need for direct memory access that requires system calls to the operating
system kernel. By removing these layers, the data transfer operation requires fewer clock
cycles in the processor, which improves the I/O performance.

The implementation of CAPI on the POWER8 processor allows hardware companies to
develop solutions for specific application demands. Companies use the performance of the
POWER8 processor for general applications and the custom acceleration of specific
functions. They do so by using a hardware accelerator with a simplified programming model
and efficient communication with the processor and memory resources.

For more information about supported CAPI adapters, see 7.10.4, “CAPI-enabled InfiniBand
adapters” on page 345.

Custom
Hardware

Application

CAPP

Coherence Bus

PSL

FPGA or ASIC

POWER8

PCIe Gen3
Transport for encapsulated messages
340 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

7.8.3 NVLink

NVLink is NVIDIA’s high-speed interconnect technology for GPU-accelerated computing.
Supported on SXM2-based Tesla P100 accelerator boards, NVLink significantly increases
performance for GPU-to-GPU communications and for GPU access to system memory.

Multiple GPUs are common in workstations, as are the nodes of high-performance computing
clusters and deep-learning training systems. A powerful interconnect is extremely valuable in
multiprocessing systems. NVLink creates an interconnect for GPUs that offer higher
bandwidth than PCI Express Gen3 (PCIe) and are compatible with the GPU ISA to support
shared memory multiprocessing workloads.

Support for the GPU ISA allows programs that are running on NVLink-connected GPUs to run
directly on data in the memory of another GPU and on local memory. GPUs can also perform
atomic memory operations on remote GPU memory addresses, which enables much tighter
data sharing and improved application scaling.

NVLink uses NVIDIA’s new High-Speed Signaling interconnect (NVHS). NVHS transmits data
over a differential pair that is running at up to 20 Gbps. Eight of these differential connections
form a sublink that sends data in one direction, and two sublinks (one for each direction) form
a link that connects two processors (GPU-to-GPU or GPU-to-CPU). A single link supports up
to 40 GBps of bidirectional bandwidth between the endpoints. Multiple links can be combined
to form gangs for even higher-bandwidth connectivity between processors. The NVLink
implementation in Tesla P100 supports up to four links, which allows for a gang with an
aggregate maximum theoretical bandwidth of 160 GBps bidirectional bandwidth.

Although NVLink primarily focuses on connecting multiple NVIDIA Tesla P100s, it can also
connect Tesla P100 GPUs with IBM Power CPUs with NVLink support. Figure 7-12 shows
how the CPUs are connected with NVLink in the S822LC for HPC server. In this configuration,
each GPU has 180 GBps bidirectional bandwidth to the other connected GPU and 80 GBps
bidirectional bandwidth to the connected CPU.

Figure 7-12 CPU to GPU and GPU to GPU interconnect using NVLink
Chapter 7. Hardware components 341

7.9 System bus

This section provides more information about the internal buses of the S822LC for HPC
server.

The S822LC for HPC server has internal I/O connectivity through PCIe Gen3 slots. The
internal I/O subsystem on the systems is connected to the PCIe controllers on a POWER8
processor in the system. Each POWER8 processor has a bus that has 32 PCIe lanes that are
running at 9.6 Gbps full-duplex and provides 64 GBps of I/O connectivity to the PCIe slots,
SAS internal adapters, and USB ports.

Some PCIe devices are connected directly to the PCIe Gen3 buses on the processors. Other
devices are connected to these buses through PCIe Gen3 switches. The PCIe Gen3 switches
are high-speed devices (512 - 768 GBps each) that allow for the optimal use of the
processors PCIe Gen3 x16 buses. The switches do so by grouping slower x8 or x4 devices
that might plug into a x8 slot and not use its full bandwidth. For more information about which
slots are connected directly to the processor and which slots are attached to PCIe Gen3
switches (referred to as PLX), see 7.6, “POWER8 processor” on page 329.

Figure 7-13 shows the server buses and logical architecture.

Figure 7-13 S822LC for HPC server buses and logical architecture

P
H

B
 0

P
H

B
 1

S
M

P
 A

 B
us

Memory
Controller

P
H

B
 0

P
H

B
 1

P
C

Ie G
e

n3
 x8

 -
C

A
P

I supp
ort

P
C

Ie
 G

en
3 x16

 -
C

A
P

I supp
ort

P
C

Ie
 G

e n
3 x16

 -
C

A
P

I supp
o rt

SATA
Controller

SFF-4
HDD/
SSD

USB 3.0
Front

USB 3.0
Rear

VGA

Management

1 Gbps
Ethernet

38.4 Total

x8x16

x 8 x16

POWER8
SCM0

POWER8
SCM1

SFF-4
HDD/
SSD

PLX

Memory
Controller

Memory
Controller

Memory
Controller

S
M

P
 A

 B
us

N
V

Lin
k

N
V

Lin
k

N
V

Lin
k

N
V

L in
k

N
V

ID
IA

 P
10

0

S
X

M
 2.0

N
V

ID
IA

 P
10

0

S
X

M
 2.0

N
V

ID
IA

 P
10

0

S
X

M
 2.0

N
V

ID
IA

 P
10

0

S
X

M
 2.0

S
M

P
 A

 B
us

S
M

P
 A

 B
us

S
M

P
 X

 B
u

s

S
M

P
 X

 B
us
342 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Each processor has 32 PCIe lanes split into the following channels:

� Two PCIe Gen3 x8 channels
� One PCIe Gen 3 x16 channel

The PCIe channels are connected to the PCIe slots, which can support GPUs and other
high-performance adapters, such as InfiniBand.

Table 7-8 lists the total I/O bandwidth of an S822LC for HPC server.

Table 7-8 I/O bandwidth

For the PCIe Interconnect, each POWER8 processor has 32 PCIe lanes that are running at
9.6 Gbps full-duplex. The bandwidth formula is calculated as follows:

Thirty-two lanes × 2 processors × 9.6 Gbps × 2 = 128 GBps

7.10 PCI adapters

This section describes the types and functions of the PCI adapters that are supported by the
S822LC for HPC server.

7.10.1 Slot configuration

The S822LC for HPC server has three PCIe Gen3 slots. Figure 7-14 shows a rear-view of the
PCIe slots.

Figure 7-14 Rear-view PCIe slots and connectors

I/O I/O bandwidth (maximum theoretical)

Total I/O bandwidth � 64 GBps simplex
� 128 GBps duplex

Note: PCIe adapters on the S822LC for HPC server are not hot-pluggable.
Chapter 7. Hardware components 343

Table 7-9 provides the PCIe Gen3 slot configuration.

Table 7-9 S822LC for HPC server PCIe slot properties

Only LP adapters can be placed in LP slots. A x8 adapter can be placed in a x16 slot, but a
x16 adapter cannot be placed in a x8 slot. One LP slot must be used for a required Ethernet
adapter (#5260, #EL3Z, or #EN0T).

7.10.2 LAN adapters

To connect the S822LC for HPC server to a local area network (LAN), you can use the LAN
adapters that are supported in the PCIe slots of the system unit. Table 7-10 lists the
supported LAN adapters for the server.

Table 7-10 Supported LAN adapters

7.10.3 Fibre Channel adapters

The S822LC for HPC server supports direct or SAN connection to devices that use Fibre
Channel adapters. Table 7-11 lists the available Fibre Channel adapter that includes LC
connectors.

Table 7-11 Supported Fibre Channel adapters

If you are attaching a device or switch with an SC-type fiber connector, an LC-SC 50-micron
fibre converter cable (#2456) or an LC-SC 62.5-micron fibre converter cable (#2459) is
required.

Slot Description Card size CAPI
capable

Power limit

Slot 1 PCIe Gen3 x16 Half height,
half length

Yes 75 W

Slot 2 PCIe Gen3 x8 Half height,
half length

Yes 50 W

Slot 3 PCIe Gen3 x16 Full height,
half length

Yes 75 W

Feature
code

Description Max OS
support

EC3A PCIe3 LP 2-Port 40 GbE NIC RoCE QSFP+ Adapter 2 Linux

EL3Z PCIe2 LP 2-port 10/1 GbE BaseT RJ45 Adapter 3 Linux

EL4M PCIe2 x4 LP 4-port (UTP) 1 GbE Adapter 3 Linux

EN0T PCIe2 LP 4-Port (10 Gb + 1 GbE) SR+RJ45 Adapter 3 Linux

EN0v PCIe2 LP 4-port (10 Gb + 1 GbE) Copper SFP+RJ45 Adapter 3 Linux

Feature
code

Description Max OS
support

EL43 PCIe3 LP 16 Gb 2-port Fibre Channel adapter 2 Linux
344 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

7.10.4 CAPI-enabled InfiniBand adapters

Table 7-12 lists the available CAPI adapters.

Table 7-12 Available CAPI adapters

7.10.5 Compute intensive accelerator

Compute intensive accelerators are GPUs that are developed by NVIDIA. With NVIDIA
GPUs, the server can offload processor-intensive operations to a GPU accelerator and boost
performance. The S822LC for HPC server aims to deliver a new class of technology that
maximizes performance and efficiency for all types of scientific, engineering, Java, big data
analytics, and other technical computing workloads.

Table 7-13 lists the available compute-intensive accelerators.

Table 7-13 Supported graphics processing units adapters

7.10.6 Flash storage adapters

The available flash storage adapters are listed in Table 7-14.

Table 7-14 Available flash storage adapters

7.11 System ports

The system board has one 1 Gbps Ethernet port, one Intelligent Platform Management
Interface (IPMI) port, and a VGA port, as shown in Figure 7-14 on page 343.

The integrated system ports are supported for modem and asynchronous terminal
connections with Linux. Any other application that uses serial ports requires a serial port
adapter to be installed in a PCI slot. The integrated system ports do not support IBM
PowerHA® SystemMirror® configurations. The VGA port does not support cable lengths that
exceed 3 meters.

Feature
code

Description Maximum OS support

EC3E PCIe3 LP 2-port 100 Gb EDR InfiniBand Adapter x16 2 Linux

EC3T PCIe3 LP 1-port 100 Gb EDR InfiniBand Adapter x16 2 Linux

Feature
code

Description Max OS
support

EC4C Two air-cooled NVIDIA Tesla P100 GPUs (for first pair) 2 Linux

EC4D Two air-cooled NVIDIA Tesla P100 GPUs (for second pair) 2 Linux

EC4F Four water-cooled NVIDIA Tesla P100 GPUs 4 Linux

Feature
code

CCIN Description Max OS support

EC54 58CB PCIe3 1.6 TB NVMe Flash Adapter 7 Linux

EC56 58CC PCIe3 3.2 TB NVMe Flash Adapter 7 Linux
Chapter 7. Hardware components 345

7.12 Internal storage

The internal storage on the S822LC for HPC server includes the following features, as listed
in Table 7-15:

� A storage backplane for two 2.5-inch SFF Gen4 SATA HDDs or SDDs.

� One integrated SATA disk controller without redundant array of independent disks (RAID)
capability.

� The storage split backplane feature is not supported.

Table 7-15 Integrated SATA disk controller features

The 2.5 inch or SFF SAS bays can contain SATA drives (HDD or SSD) that are mounted on a
Gen4 tray or carrier (also knows as SFF-4). SFF-2 or SFF-3 drives do not fit in an SFF-4 bay.
All SFF-4 bays support concurrent maintenance or hot-plug capability.

Figure 7-15 shows the server front view with the standard backplane.

Figure 7-15 Server front view with SFF-4 locations

Limitation: The disks use an SFF-4 carrier. Disks that are used in other Power
Systems servers usually have an SFF-3 or SFF-2 carrier and are not compatible with
this system.

Feature Integrated SATA disk controller

Supported RAID types JBOD

Disk bays Two SFF Gen4 (HDDs/SDDs)

SATA controllers Single

IBM Easy Tier® capable controllers No

External SAS ports No

Split backplane No

SFF-4 Carrier
SATA HDD or SSD

SFF-4 Carrier
SATA HDD or SSD

Front bezel is removed in this illustration
346 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Figure 7-16 shows the logical connections of the integrated SATA disk controller.

Figure 7-16 Logical diagram for integrated SATA disk controller

7.12.1 Disk and media features

The server supports the attachment of up to two SATA storage devices, as listed in
Table 7-16.

Table 7-16 Supported storage devices

The S822LC for HPC server is designed for network installation or USB media installation. It
does not support an internal DVD drive.

Integrated
SATA controller

Internal SATA Cable

SATA

SATA

System Planar

Feature code Description Max OS support

ELD0 1 TB 7.2k RPM SATA SFF-4 disk drive 2 Linux

ES6A 2 TB 7.2k RPM 5xx SATA SFF-4 disk drive 2 Linux
Chapter 7. Hardware components 347

7.13 External I/O subsystems

The S822LC for HPC server does not support external PCIe Gen3 I/O expansion drawers or
EXP24S SFF Gen2-bay drawers.

7.13.1 BMC

The IBM Power System S822LC (8335-GTB) server features a baseboard management
controller (BMC) for out-of-band system management. Some functions are also available by
way of in-band methods. This system management differs from previous lines of IBM Power
System servers, which traditionally featured a flexible service processor (FSP) for that
purpose, with increased focus on RAS functions.

The BMC offers functions that are more focused on scale-out environments, such as HPC
clusters and cloud platform infrastructure, where factors (such as automation and simplicity
for deployment and maintenance) play an important role. For example, the BMC provides the
following functions:

� Power management

� Console (or terminal) sessions

� Network and boot device configuration

� Sensors information (for example, temperature, fan speed, and voltage)

� Firmware and vital product data (VPD) information (for example, firmware components
version, serial number, and machine-type model)

� Virtual hard disk and optical drives (for example, for installing operating systems)

� System firmware upgrade

The BMC functions are available by way of several methods, for example:

� IPMI (in-band and out-of-band)
� Advanced System Management Interface (ASMI)
� Secure Shell (SSH)

The BMC provides the following ports:

� Ethernet port, for out-of-band IPMI, ASMI (web), and SSH access

� Video Graphics Adapter (VGA) port, for graphics display (functional from Petitboot
onward)

� Serial port

� Internal (in-chassis) serial port
348 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

7.14 Mellanox InfiniBand

The IBM Power System S822LC (8335-GTB) server can include one-port or two-port high
bandwidth and low latency Mellanox InfiniBand host channel adapters (HCAs). These HCAs
connect to the bus through PCIe 3.0 x16, which can deliver 100 Gbps of data at each EDR
port.

InfiniBand provides the following significant features, among others:

� Delivers more than 100 Gb per second overall throughput
� Implements Virtual Protocol Interconnect (VPI)
� Takes over transport operations to offload the CPU
� Supports noncontinuous memory transfers
� Supported by IBM Spectrum MPI

Device drivers and support tools are available with the Mellanox OpenFabrics Enterprise
Distribution (OFED) for Linux.

7.15 IBM System Storage

The IBM System Storage® disk systems products and offerings provide compelling storage
solutions with value for all levels of business, from entry-level to high-end storage systems.
For more information about the offerings, see the Disk storage page of the IBM Storage
website.

The following section highlights a few of the offerings.

7.15.1 IBM Storwize family

The IBM Storwize® family is the ideal solution to optimize the data architecture for business
flexibility and data storage efficiency. Different models, such as the IBM Storwize V3700, IBM
Storwize V5000, and IBM Storwize V7000, offer storage virtualization, IBM Real-time
Compression™, Easy Tier, and many more functions. For more information, see the IBM
Storwize family page of the IBM Storage website.

7.15.2 IBM FlashSystem family

The IBM FlashSystem® family delivers extreme performance to derive measurable economic
value across the data architecture (servers, software, applications, and storage). IBM offers a
comprehensive flash portfolio with the IBM FlashSystem family. For more information, see the
IBM Flash Storage is the Future page of the IBM Storage website.
Chapter 7. Hardware components 349

http://www.ibm.com/systems/storage/disk
http://www.ibm.com/systems/storage/storwize
http://www.ibm.com/systems/storage/storwize
http://www.ibm.com/systems/storage/disk
http://www.ibm.com/systems/storage/disk
http://www.ibm.com/systems/storage/flash

7.15.3 IBM XIV Storage System

The IBM XIV® Storage System is a high-end disk storage system that helps thousands of
enterprises meet the challenge of data growth with hot spot-free performance and ease of
use. Simple scaling, high service levels for dynamic, heterogeneous workloads, and tight
integration with hypervisors and the OpenStack platform enable optimal storage agility for
cloud environments.

XIV Storage Systems extend ease of use with integrated management for large and multi-site
XIV deployments, reducing operational complexity, and enhancing capacity planning. For
more information, see the IBM XIV Storage System page of the IBM IT infrastructure website.

7.15.4 IBM Elastic Storage Server

The IBM Elastic Storage™ Server is software-defined storage that combines IBM Spectrum
Scale, which provides the clustered file systems, and the CPU and I/O capability of the IBM
POWER8 architecture.

The building block-based solution of the Elastic Storage Server delivers high performance,
high available, and scalable IBM Spectrum Scale functions to today’s high performance and
business analytics clusters. For more information, see the IBM Elastic Storage Server page of
the IBM IT infrastructure website.
350 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.ibm.com/systems/storage/disk/xiv/index.html
http://www.ibm.com/systems/storage/disk/xiv/index.html
http://www.ibm.com/systems/storage/disk/xiv/index.html
http://www.ibm.com/systems/storage/spectrum/ess/

Chapter 8. Software stack

This chapter describes the software stack that is used in the implementation of an IBM High
Performance Computing (HPC) solution on an IBM POWER8 with the IBM Power System
S822LC (8335-GTB) HPC server.

This chapter includes the following topics:

� 8.1, “System management” on page 352

� 8.2, “OPAL firmware” on page 352

� 8.3, “xCAT” on page 353

� 8.4, “RHEL server” on page 353

� 8.5, “NVIDIA CUDA Toolkit” on page 353

� 8.6, “Mellanox OFED for Linux” on page 354

� 8.7, “IBM XL compilers, GCC, and Advance Toolchain” on page 355

� 8.8, “IBM Spectrum MPI” on page 356

� 8.9, “IBM Engineering and Scientific Subroutine Library and IBM Parallel ESSL” on
page 357

� 8.10, “IBM Spectrum Scale (formerly IBM GPFS)” on page 358

� 8.11, “IBM Spectrum LSF (formerly IBM Platform LSF)” on page 359

8

© Copyright IBM Corp. 2017. All rights reserved. 351

8.1 System management

The baseboard management controller (BMC) provides the system management functions by
way of the following methods:

� The Advanced System Management Interface (ASMI)
� The Secure Shell (SSH) protocol
� The Intelligent Platform Management Interface (IPMI) protocol

You can access each method by way of one or more BMC IP addresses with the following
software:

� ASMI: Any standards-compliant web browser, by way of both (Secure) Hypertext Transfer
Protocols (HTTP and HTTPS)

� SSH: Any standards-compliant SSH client

� IPMI: The IPMItool utility, version 1.8.17 and later (requirement for some functions)

The IPMI method is available out-of-band (from other systems, by way of network), and
in-band (from the current system, by way of internal communication).

For more information about build instructions for IPMItool, see 5.4.8, “IPMI authentication
credentials” on page 224.

For more information about the IPMItool, see the IPMtool page of the Sourceforge
website.

You also can configure access credentials for each method on the ASMI.

8.2 OPAL firmware

The Open Power Abstraction Layer (OPAL) firmware is available on the IBM Power System
8335-GTB server and several other IBM Power Systems servers with POWER8 processors.
The OPAL firmware supports running Linux in non-virtualized (or bare-metal) mode and
virtualized mode (guest or virtual machine) with kernel-based virtual machine (KVM)
acceleration.

With the OPAL firmware, several of the system management functions are performed by way
of IPMI rather than Hardware Management Console (HMC), which was used in previous
generations of IBM Power Systems servers. This configuration makes systems with OPAL
firmware more suited for a wider range of environments and system management tools,
which allows for more choice and integration between software and hardware components.

For more information about the OPAL firmware, see the OPAL firmware open source project
page.
352 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

https://github.com/open-power
https://github.com/open-power
http://sourceforge.net/projects/ipmitool
http://sourceforge.net/projects/ipmitool

8.3 xCAT

The Extreme Cluster/Cloud Administration Toolkit (xCAT) performs the roles of deployment
and management of the software stack. Among other tasks, it controls the node discovery
process, power management, console sessions, operating system provisioning, and software
stack installation and configuration.

xCAT is open source software, and relatively recently moved toward more openness,
adopting significant changes to its development process and documentation pages. The
development process is now hosted on GitHub (with public milestones and schedules, issue
reporting and tracking, and source-code pull requests), and the documentation pages are
refreshed and hosted on Read The Docs (a GitHub service).

xCAT also provides community support, and support options are available from IBM.

xCAT 2.12 release introduces support for the IBM Power System 8335-GTB server, which is
accompanied with Linux distributions, installation modes, and the following features:

� Red Hat Enterprise Linux (RHEL) Server 7.3 for PowerPC 64-bit Little-Endian (ppc64le) in
non-virtualized (or bare-metal) mode

� CUDA Toolkit for NVIDIA graphics processing units (GPUs)

� Mellanox OpenFabrics Enterprise Distribution (OFED) for Linux

� IBM HPC software support with xCAT kits

� System management: Hardware discovery, hardware control, and console sessions

� Diskful and diskless installation

For more information, see the following resources:

� xCAT project page
� xCAT documentation page
� GitHub xCAT 2.12 Release Notes page

8.4 RHEL server

RHEL is the world’s leading enterprise Linux platform,1 which runs on highly scalable,
multi-core systems that support the most demanding workloads. Collaboration between Red
Hat and engineers from major hardware vendors ensures that the operating system uses the
newest hardware innovations that are available in chip design, system architecture, and
device drivers to improve performance and reduce power utilization.

For more information, see the RHEL documentation at the Product Documentation for Red
Hat Enterprise Linux page of the Red Hat website.

8.5 NVIDIA CUDA Toolkit

The Compute Unified Device Architecture (CUDA) is a programming model and application
programming interface (API) that uses the NVIDIA General Purpose Graphics Processing
Unit (GPGPU), which provides a highly scalable parallel computing platform.

1 According to the Red Hat Enterprise Linux data sheet published by Red Hat, Inc. (#12182617_V1_0514).
Chapter 8. Software stack 353

https://github.com/xcat2/xcat-core/wiki/XCAT_2.12_Release_Notes
http://xcat.org
http://xcat-docs.readthedocs.org
http://xcat.org
http://xcat-docs.readthedocs.org
https://access.redhat.com/documentation/en/red-hat-enterprise-linux
https://access.redhat.com/documentation/en/red-hat-enterprise-linux

The toolkit offers a multi-platform apparatus to develop, compile, debug, profile, and run
CUDA programs on GPUs. In addition to APIs and runtime libraries, the following main
resources are bundled:

� nvcc: A CUDA compiler (nvcc)
� cuda-gdb: A command-line program debugger
� cuda-memcheck: Suite of tools for dynamic error detection
� profiler: A command-line program profiling tool (nvprof) and GUI-oriented (Visual Profiler)
� Binary utilities
� Development libraries
� Nsight Eclipse Edition: An Eclipse-based integrated development environment (IDE)

In many sections of this book, references are made to some aspects of the CUDA Toolkit
usage in the context of HPC on IBM Power Systems. For more information about the toolkit,
see NVIDIA’s CUDA Toolkit Documentation v8.0.61 website.

8.6 Mellanox OFED for Linux

Mellanox OFED for Linux is a version of the OFED distribution from the OpenFabrics Alliance
that is tested and packaged by Mellanox. It supports Remote Direct Memory Access (RDMA)
and kernel bypass APIs (OFED verbs) over InfiniBand and Ethernet.

The Mellanox OFED for Linux includes the following components:

� Drivers for InfiniBand, RDMA over Converged Ethernet (RoCE), L2 network interface
controller (NIC)

� Access Layers and common verbs interface

� Virtual Protocol Interconnect (VPI)

� IP-over-IB

� Subnet Manager (OpenSM)

� Installation, administration, and diagnostics tools

� Performance test suites

For more information, see the Mellanox website.

Note: At the time of this writing, the latest CUDA Toolkit version 8.0 is fully supported on
the IBM Power 8335-GTB System with RHEL version 7.3 for Linux on POWER8
Little-endian.
354 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.mellanox.com
http://www.mellanox.com
http://docs.nvidia.com/cuda/index.html

8.7 IBM XL compilers, GCC, and Advance Toolchain

This section describes some of the compiler options that are available for the software stack,
such as the IBM XL compilers, GNU Compiler Collection (GCC), and IBM Advance Toolchain
(more recent GCC and libraries than in the Linux distribution).

8.7.1 XL compilers

IBM XL compilers enhancements help to increase application performance and developer
productivity. XL Fortran v15.1.4 and v15.1.5 and XLC/C++ v13.1.2 and v13.1.5 compilers
support the latest Linux distributions, including RHEL 7.3, and all of the new features of the
POWER8 processor, including the latest built-in vector intrinsics.

The XL Fortran compiler improves support of the following features from release to release:

� Intrinsic procedures, which help to increase utilization of POWER8 processors

� New compiler options

� Fortran 2008 features

� Language interoperability, with which developers write programs that contain parts that
are written in Fortran and parts that are written in the C language

� OpenMP (OpenMP Application Program Interface Version 3.1 specification and partially
supports the OpenMP Application Program Interface Version 4.5 specification)

The following changes are included in the latest releases of the XL C/C++ compilers:

� Support of new built-in functions for POWER8 processors

� More compiler options

� Increase support of the following C/C++ standards:

– C++14
– C++11
– C11

� Partial support of OpenMP 4.0 (Version 13.1.2 fully supports only the OpenMP Application
Program Interface Version 3.1 specification).

For more information about XL Fortran support for POWER8 processor, see the following
resources:

� IBM XL Fortran for Linux, V15.1.4 (little endian distributions) documentation
� IBM XL Fortran for Linux, V15.1.5 (little endian distributions) documentation

For more information about XL C/C++ compilers, see the following websites:

� IBM XL C/C++ for Linux, V13.1.4 (little endian distributions) documentation
� IBM XL C/C++ for Linux, V13.1.5 (little endian distributions) documentation
Chapter 8. Software stack 355

http://www.ibm.com/support/knowledgecenter/en/SSAT4T_15.1.4/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/en/SSAT4T_15.1.4/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/en/SSAT4T_15.1.5/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/en/SSAT4T_15.1.5/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/en/SSXVZZ_13.1.4/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/en/SSXVZZ_13.1.5/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/en/SSXVZZ_13.1.4/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/en/SSXVZZ_13.1.5/com.ibm.compilers.linux.doc/welcome.html

8.7.2 GCC and Advance Toolchain

GCC 4.8.5 is included in the RHEL 7.3 distribution. It includes features and optimizations in
the common parts of the compiler that improve support for the POWER8 processor
architecture.

The IBM Advance Toolchain for Linux on Power is a set of open source development tools
and runtime libraries that allows users to use the latest IBM POWER8 hardware features on
Linux. It supports big endian (ppc64) and little endian (ppc64le).

The latest release includes current versions of the following packages, which can help with
porting and tuning applications for POWER8:

� GNU Compiler Collection (gcc, g++, gfortran), including individually optimized gcc runtime
libraries for supported POWER8 processor

� GNU C library (glibc), individually optimized for supported POWER8 processor

� GNU Binary Utilities (binutils)

� AUXV Library (libauxv)

� GNU Debugger (gdb)

� Performance analysis tools (oprofile, valgrind, and itrace)

� Multi-core exploitation libraries (Intel TBB, Userspace RCU, and SPHDE)

� Plus several support libraries (libhugetlbfs, Boost, zlib, and more)

For more information about GCC support on POWER8 for RHEL 7.3, see the GCC 4.8
Release Series website.

For more information about the IBM Advance Toolchain, see the IBM Advance Toolchain for
PowerLinux Documentation website.

8.8 IBM Spectrum MPI

IBM Spectrum MPI is a production-quality implementation of the Message Passing Interface
(MPI) that supports the broadest range of industry standard platforms, interconnects, and
operating systems to help ensure that parallel applications can run on any platform. It
provides a familiar interface that is easily portable, and incorporates advanced CPU affinity
features, dynamic selection of interface libraries, and superior workload manager integrations
that lead to improved performance.

IBM Spectrum MPI (V10) is supported on Linux on x86 and POWER8 (Little Endian). This
new version of Spectrum MPI is based on the open source Open MPI distribution.

For more information about IBM Spectrum MPI, see the IBM Spectrum MPI website.

Note: For some specific workloads, GCC 5.2 provided with the IBM Advance Toolchain
and GCC 4.8.5 provided with the RHEL 7.3 distribution have different performance results.
356 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www-03.ibm.com/systems/spectrum-computing/products/mpi/
http://ibm.co/1CsNsDs
http://ibm.co/1CsNsDs
https://gcc.gnu.org/gcc-4.8/
https://gcc.gnu.org/gcc-4.8/

8.8.1 IBM Parallel Performance Toolkit for POWER

IBM Parallel Performance Toolkit for POWER is the new name for IBM Parallel Environment
Developer Edition for Linux on Power. Version 2.3 is supported running on the IBM Power
System S822LC (8335-GTB) for High Performance Computing (HPC) server with NVIDIA
Tesla P100 with NVLink Graphics processor units (GPUs) running Red Hat Enterprise Linux
(RHEL) 7.3 in little-endian mode. Version 2.2 and 2.3 are supported running on the IBM
Power System S822LC (8335-GTA) server with NVIDIA K80 GPUs running RHEL 7.2 in
little-endian mode. It includes the following features:

� Improved scaling that uses MRNet, a software overlay network that provides efficient
multicast and reduction communications for parallel and distributed tools and systems
(V2.3)

� Support for OpenMP Tools, an API for performance analysis (V2.3)

� Visualization improvements of trace and profile data (V2.3)

� Enhancements to event counters and performance metrics for profiling and tracing (V2.2)

� Support for NVIDIA K80 and NVIDIA Tesla P100 GPUs and PCIe InfiniBand EDR
adapters interconnected that use EDR InfiniBand switches

For more information about the toolkit, see IBM Parallel Performance Toolkit for POWER
Installation and Users Guide, SC23-7287, which is available at the Parallel Performance
Toolkit page of the IBM Knowledge Center website.

8.9 IBM Engineering and Scientific Subroutine Library and IBM
Parallel ESSL

The Engineering and Scientific Subroutine Library (ESSL) family of products is a
state-of-the-art collection of mathematical subroutines. Running on IBM POWER8 servers
and clusters, the ESSL family provides a wide range of high-performance mathematical
functions for various scientific and engineering applications.

The collection features the following types of libraries:

� ESSL 5.5, which contains over 600 high-performance serial and symmetric
multiprocessing (SMP) mathematical subroutines that are tuned for POWER8.

� Parallel ESSL 5.3, which contains over 125 high-performance single program, multiple
data (SPMD) mathematical subroutines. These subroutines are designed to use the full
power of clusters of POWER8 servers that are connected with a high-performance
interconnect.

IBM ESSL includes an IBM implementation of BLAS/LAPACK and IBM Parallel ESSL
includes an IBM implementation of ScaLAPACK, which are the industry standards for linear
algebra subroutines. If the application uses BLAS/LAPACK/ScaLAPACK functions, you
recompile your application on IBM POWER8 and link it with IBM ESSL to optimize
performance.

Additionally, IBM ESSL implements some linear algebra routines that are not included in
BLAS/LAPACK’ for example, _GETMI (General Matrix Transpose [In-Place]) and _GETMO
(General Matrix Transpose [Out-of-Place]).
Chapter 8. Software stack 357

http://www-01.ibm.com/support/knowledgecenter/SSFK5S/welcome
http://www-01.ibm.com/support/knowledgecenter/SSFK5S/welcome
http://www-01.ibm.com/support/knowledgecenter/SSFK5S/welcome

For POWER8 servers and clusters (which have NVIDIA GPUs within), performance can be
significantly improved by using environment variables, which enables GPU usage inside
ESSL routines. The following options are available:

� GPU-only mode: All computations are performed on GPU.

� Hybrid mode: All computations are distributed between GPU and CPU to increase system
use.

ESSL also provides support for the following libraries:

� Fastest Fourier Transform in the West (FFTW)
� CBLAS

All routines from the ESSL family are callable from Fortran, C, and C++.

For more information about the IBM ESSL, see the Engineering and Scientific Subroutine
Library page of the IBM Knowledge Center website.

For more information about the IBM Parallel ESSL, see the Parallel Engineering and Scientific
Subroutine Library page of the IBM Knowledge Center website.

8.10 IBM Spectrum Scale (formerly IBM GPFS)

IBM Spectrum Scale is a distributed, high-performance, massively scalable enterprise file
system solution that addresses the most challenging demands in high-performance
computing. It is a proven solution that is used to store the data for thousands of
mission-critical commercial installations worldwide.

The IBM Spectrum Scale is software-defined storage for high-performance, large-scale
workloads on-premises or in the cloud. This scale-out storage solution provides file, object,
and integrated data analytics for the following items:

� Compute clusters (technical computing, and high-performance computing)
� Big data and analytics
� Hadoop Distributed File System (HDFS)
� Private cloud
� Content repositories
� File Placement Optimizer (FPO)

For more information, see the IBM Spectrum Scale website.
358 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.ibm.com/systems/storage/spectrum/scale/index.html
http://www.ibm.com/support/knowledgecenter/#!/SSNR5K/pessl_welcome.html
http://www.ibm.com/support/knowledgecenter/#!/SSNR5K/pessl_welcome.html
http://www.ibm.com/support/knowledgecenter/#!/SSFHY8/essl_welcome.html
http://www.ibm.com/support/knowledgecenter/#!/SSFHY8/essl_welcome.html

8.11 IBM Spectrum LSF (formerly IBM Platform LSF)

The IBM Spectrum LSF is a workload management that coordinates shared access and
optimized use of computing resources of an HPC cluster. It provides the following features:

� Policy-driven work scheduling and load balancing
� Compute resources allocation
� Cluster resources administration
� Cluster monitoring
� Supports heterogeneous resources and multi-cluster
� Fault tolerance
� Security

At the time this writing, the latest version (10.1.0) supports the IBM Power System 8335-GTB
server with RHEL version 7.3. Spectrum LSF is also fully integrated with the IBM Parallel
Environment.

Cluster users and administrators can interact with Spectrum LSF by way of the command-line
tools, web interface (provided by the IBM Platform Center), or application programming
interface (API).

For more information, see the IBM High Performance Computing software supports IBM
Power Systems 8335-GTB servers running Red Hat Enterprise Linux (RHEL) 7.3 in
little-endian mode announcement.

For more information about Spectrum LSF in the context of the HPC solution that is described
in this book, see 3.4, “Using the IBM Spectrum LSF” on page 112 and Chapter 6, “Cluster
monitoring and health checking” on page 289.

For more information about IBM Spectrum LSF, see the IBM Spectrum LSF V10.1
documentation website.
Chapter 8. Software stack 359

http://www.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/6/897/ENUS215-396/index.html
http://www.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/6/897/ENUS215-396/index.html
http://www.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/6/897/ENUS215-396/index.html
http://www.ibm.com/support/knowledgecenter/SSWRJV_10.1.0/lsf_welcome/lsf_welcome.html
http://www.ibm.com/support/knowledgecenter/SSWRJV_10.1.0/lsf_welcome/lsf_welcome.html

360 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Appendix A. ISV Applications

Although the target audience for this IBM Redbooks publication is system administrators and
application developers, this appendix covers several topics that are mostly relevant to the
application users of the IBM POWER8 high-performance computing solution.

A

© Copyright IBM Corp. 2017. All rights reserved. 361

Application software

This section describes examples of software packages from the following application
domains:

� Bioinformatics
� Computational fluid dynamics
� Molecular dynamics

This section also provides basic guidance about the compilation and execution of several of
these applications.

Bioinformatics

Personal healthcare is a rapidly growing area. Driven by the high demand for low-cost
nucleotide sequencing, several new genome sequencing methods were developed recently.
These methods are commonly known as next-generation sequencing (NGS) methods. In
recent years, these methods were implemented in commercial sequencer apparatus, and
sequencing of genetic material is now a routine procedure.

The NGS technology produces vast amounts of raw genome sequence data. As a result,
researchers and clinicians need solutions that can solve the problem of large volume NGS
data management, processing, and analysis. The underlying computing resources are
equipped ideally with multiple fast processors, a large amount of RAM, and an efficient
storage system. POWER8 machines that run the Linux operating system are good
candidates for the role of NGS data machines.

Trinity
Trinity is a popular tool for the processing and analysis of genomic sequencing data. For
more information about compilation options and an evaluation of the performance of
POWER8 processor-based systems in NGS analysis, see the Performance of Trinity
RNA-seq de novo assembly paper that is available at the IBM PartnerWorld® website.

BioBuilds suite
Major genomics applications on POWER8, including Trinity, are available for download as
part of the BioBuilds suite. The suite is a collection of open source bioinformatics tools and is
distributed at no extra charge. The package is pre-built and optimized for the IBM Linux on
Power platform. It also includes supporting libraries for the tools. Table A-1 lists the set of
available tools as of the BioBuilds 2015.11 release.

Table A-1 Bioinformatics tools available in BioBuilds 2015.11 release

Bioinformatics tools from the BioBuilds suite (2015.11 release)

ALLPATHS-LG ClustalW iSAAC SOAP3-DP

BAMtools Cufflinks Mothur SOAPaligner

Barracuda EBSEQ NCBI SOAPbuilder

bedtools EMBOSS Oases/Velvet SOAPdenovo2

Bfast FASTA Picard STAR

Bioconductor FastQC PLINK tabix

BioPython HMMER Pysam TMAP
362 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.ibm.com/partnerworld/wps/servlet/ContentHandler/stg_ast_sys_wp-performance-of-trinity-rna-seqde-novo-assembly
http://www.ibm.com/partnerworld/wps/servlet/ContentHandler/stg_ast_sys_wp-performance-of-trinity-rna-seqde-novo-assembly
http://www.ibm.com/partnerworld/wps/servlet/ContentHandler/stg_ast_sys_wp-performance-of-trinity-rna-seqde-novo-assembly
http://www.ibm.com/partnerworld/wps/servlet/ContentHandler/stg_ast_sys_wp-performance-of-trinity-rna-seqde-novo-assembly

Because genome sequencing is a compute-intensive task, the sequencing can gain a large
performance benefit by using an accelerator. The Barracuda and SOAP3-DP tools that are
listed in Table A-1 on page 362 are examples of open source bioinformatics applications that
can offload computations to a GPU.

For more information, see the BioBuilds page of the IBM Global Solutions Directory website.

BALSA
BALSA is another example of an application that uses the computational power of the GPU
for the secondary analysis of next generation sequencing data. With two GPUs installed, the
tool can analyze two samples in parallel.

For more information about BALSA, see the BALSA page of the SourceForge website.

OpenFOAM

The Open Field Operation and Manipulation (OpenFOAM) Computational Fluid Dynamics
(CFD) toolbox is an open source CFD software package that is available at no extra charge. It
has a large user base across most areas of engineering and science, from commercial and
academic organizations.

OpenFOAM includes an extensive range of features to solve anything from complex fluid
flows involving chemical reactions, turbulence, and heat transfer, to solid dynamics and
electromagnetic. It includes tools for meshing, notably snappyHexMesh, a parallelized mesher
for complex computer-aided engineering (CAE) geometries, and for pre- and post-processing.
Almost everything (including meshing, and pre- and post-processing) runs in parallel as
standard, which enables users to take full advantage of computer hardware at their disposal.

Several versions of OpenFOAM are available. This section provides an example of
OpenFOAM 2.4.0, focusing on how to install and run it, and how to get the most out of the
POWER8 architecture with this application.

Preparation before installing OpenFOAM
This example uses the GNU compiler and the OpenMPI for MPI parallelization, as shown in
Example A-1.

Example A-1 Preparation before installation of OpenFOAM

$ export MP_COMPILER=gnu

Bowtie HTSeq RSEM TopHat

Bowtie2 htslib Samtools Trinity

BWA IGV SHRiMP variant_tools
Appendix A. ISV Applications 363

http://www.ibm.com/partnerworld/gsd/solutiondetails.do?solution=51837
https://sourceforge.net/projects/balsa/

Installing OpenFOAM
This section described how to download and install the OpenFOAM 2.4.0 package. Complete
the following steps:

1. Download and decompress the source codes of OpenFOAM and the third-party toolkit,
as shown in Example A-2.

Example A-2 Preparing the required sources of OpenFOAM and third-party pack

$ mkdir -p $HOME/OpenFOAM
$ cd $HOME/OpenFOAM
$ wget http://jaist.dl.sourceforge.net/project/foam/foam/2.4.0/OpenFOAM-2.4.0.tgz
$ wget
http://jaist.dl.sourceforge.net/project/foam/foam/2.4.0/ThirdParty-2.4.0.tgz
$ tar zxvf OpenFOAM-2.4.0.tgz
$ tar zxvf ThirdParty-2.4.0.tgz

2. For OpenFOAM 2.4.0, obtain a patch file from the OpenFOAM Issue Tracking website.

From this site, download the enable_ppc64el_patch.patch file to the $HOME/OpenFOAM
directory and apply it, as shown in Example A-3.

Example A-3 Applying the required patch to OpenFOAM

$ cd $HOME/OpenFOAM/OpenFOAM-2.4.0
$ patch -p1 < ../enable_ppc64el_patch.patch

3. Set the environment variables that are required for OpenFOAM and start the shell script
Allwmake, as shown in Example A-4.

Example A-4 Starting OpenFOAM building

$ export FOAM_INST_DIR=$HOME/OpenFOAM
$ source $FOAM_INST_DIR/OpenFOAM-2.4.0/etc/bashrc
$ cd $FOAM_INST_DIR/OpenFOAM-2.4.0
$./Allwmake
364 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

https://openfoam.org/download/2-4-0-source/
https://openfoam.org/download/2-4-0-source/
https://openfoam.org/download/2-4-0-source/
http://www.openfoam.org/mantisbt/view.php?id=1759
https://openfoam.org/download/2-4-0-source/

Running OpenFOAM
To run OpenFOAM, a series of input data is needed that is a combination of data sets, such
as boundary conditions, initial conditions, various physical parameters, and the selections
from many solvers and methods prepared in OpenFOAM. This input data defines the physical
simulation that the user wants to solve.

OpenFOAM includes examples of these data sets that are called tutorials. This example
shows a tutorial that is named “motorbike”. The motorbike tutorial simulates a typical CFD
that calculates the steady flow around a motorcycle and rider and is one of the major tutorials
for the performance benchmark.

Figure A-1 shows the images of the motorcycle and rider. These images are rendered by
using the ParaView tool. The ParaView tool binary for Windows 64-bit, Windows 32-bit, Linux
64-bit, and Mac OS X is available from the ParaView website. (The source code of the
ParaView tool is also included in this toolkit.)

Figure A-1 Motorbike input for OpenFOAM simulation

There are nine programs that can be used for completing the motorbike simulation, as shown
in Example A-5. These programs are implemented in the Allrun script file that is in the
following directory:

$HOME/OpenFOAM/OpenFOAM-2.4.0/tutorials/incompressible/simpleFoam/motorBike/

Example A-5 Nine OpenFOAM programs executed in the motorbike simulation

surfaceFeatureExtract
blockMesh
decomposePar
snappyHexMesh
patchSummary
potentialFoam
simpleFoam
reconstructParMesh
reconstructPar
Appendix A. ISV Applications 365

http://www.paraview.org/

These nine programs are executed one by one in the Allrun script. Among these nine
programs, four programs (snappyHexMesh, patchSummary, potentialFoam, and simpleFoam) are
executed with message passing interface (MPI) parallelization. By default, they are executed
with six MPI processes. The other five programs (surfaceFeatureExtract, blockMesh,
decomposePar, reconstructParMesh, and reconstructPar) are not MPI implemented and
executed serially by using one CPU core.

Among these programs, simpleFoam is the main solver for this motorbike simulation, which
solves the velocity and pressure by iterative calculation by using the Semi-Implicit Method for
Pressure-Linked Equation (SIMPLE) method. In general, simpleFoam takes much time to
complete and its elapsed time accounts for most of the elapsed time of all nine programs.

Simulating a large-size problem with many MPI processes
The POWER8 architecture has high memory bandwidth. Even if you increase the number of
grids that are used in the problem and the number of MPI processes, you can run your jobs
comfortably without seeing the performance degradation that is caused by memory
performance bottleneck. Therefore, you can increase the problem size and the number of MPI
processes to use of the POWER8 architecture.

The following section shows how to increase the problem size (the number of grids) and the
number of MPI processes by using the motorbike case as an example.

Increasing the problem size
This section describes how to increase the problem size and the number of processes by
referring to the previous motorbike case (see Figure A-1 on page 365).

To change the problem size of the simulation, modify the parameter settings in the
blockMeshDict file. This file is in the following directory:

$HOME/OpenFOAM/OpenFOAM-2.4.0/tutorials/incompressible/simpleFoam/motorBike/consta
nt/polyMesh/

The default is 1280 grids (20 x 8 x 8 grids), as shown in Figure A-2.

Figure A-2 20 x 8 x 8 grids (default)
366 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

For example, if you want to change the default grid into a 40 × 16 × 16 grids (10240 grids), as
shown in Figure A-3, you must modify blockMeshDict, as shown in Example A-6.

Figure A-3 40 x 16 x 16 grids

Example A-6 shows modifying the blockMeshDict file.

Example A-6 Modification of blockMeshDict file

$ diff blockMeshDict.org blockMeshDict
34c34
< hex (0 1 2 3 4 5 6 7) (20 8 8) simpleGrading (1 1 1)

> hex (0 1 2 3 4 5 6 7) (40 16 16) simpleGrading (1 1 1)

For more information about blockMeshDict, see 4.3 Mesh generation with the blockMesh
utility, which is available at the OpenFOAM website.

Increasing the number of MPI processes
The method of parallel computing that is used by OpenFOAM is known as domain
decomposition. In this method, the geometry and associated fields are broken into pieces and
allocated to each CPU core for computation. The flow of parallel computation involves the
decomposition of mesh and fields, running the application in parallel, and post-processing the
decomposed case, as described in the following sections. The parallel running uses
OpenMPI for the standard MPI.

To change the number of MPI processes, the modifications that are described next must be
made.

Selecting the method of the domain decomposition
You can select the scotch method rather than default hierarchical method for the domain
decomposition. The scotch decomposition requires no geometric input from the user and
attempts to minimize the number of processor boundaries.

This section shows the difference between hierarchical and scotch by using simple figures of
1280 grids (20 x 8 x 8 grids).
Appendix A. ISV Applications 367

http://www.openfoam.com/documentation/user-guide/blockMesh.php
http://www.openfoam.com/documentation/user-guide/blockMesh.php

Figure A-4 shows the hierarchical method. The domain is decomposed as (X-direction,
Y-direction, Z-direction) = (3, 2, 1), based on the parameter settings that are stated in the
decomposeParDict file.

Figure A-4 Domain decomposition by hierarchical method

Figure A-5 shows the scotch method. In this method, the scotch library automatically decides
the optimal domain decomposition, so you do not need to set the number of decomposition
for each direction of X, Y, and Z.

Figure A-5 Domain decomposition by scotch method

To select the scotch method instead of the hierarchical method, modify the parameter settings
of the decomposeParDict file, as shown in Example A-7.

Example A-7 Changing the parameter settings in the decomposeParDict file

$ cd
$HOME/OpenFOAM/OpenFOAM-2.4.0/tutorials/incompressible/simpleFoam/motorBike/system
/
$ diff decomposeParDict.org decomposeParDict
20c20
< method hierarchical;

> method scotch;
368 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Changing the number of subdomains
To change the number of subdomains from 6 to 40 (as shown in Figure A-6), you must modify
the parameter settings of the decomposeParDict file, as shown in Example A-8.

Figure A-6 Forty subdomains for forty MPI processes

Example A-8 shows how to modify the parameters of the ecomposeParDict file.

Example A-8 Changing the parameter settings in decomposeParDict file

$ cd
$HOME/OpenFOAM/OpenFOAM-2.4.0/tutorials/incompressible/simpleFoam/motorBike/system
/
$ diff decomposeParDict.org decomposeParDict
18c18
< numberOfSubdomains 6;

> numberOfSubdomains 40;

Changing the number of MPI processes
Change the number of MPI processes in the Allrun file, as shown in Example A-9. The
number of MPI processes often must be the same as the number of subdomains as
described in “Changing the number of subdomains” on page 369.

Example A-9 Changing the parameter settings of Allrun

$ cd $HOME/OpenFOAM/OpenFOAM-2.4.0/tutorials/incompressible/simpleFoam/motorBike/
$ diff Allrun.org Allrun
14c14
< runParallel snappyHexMesh 6 -overwrite

> runParallel snappyHexMesh 40 -overwrite
23,25c23,25
< runParallel patchSummary 6
< runParallel potentialFoam 6
< runParallel $(getApplication) 6

> runParallel patchSummary 40
> runParallel potentialFoam 40
> runParallel $(getApplication) 40
Appendix A. ISV Applications 369

Running the motorbike simulation
After completing these preparations, run the motorbike simulation by running the Allrun
script, as shown in Example A-10. After the Allrun script starts, the binary files that are listed
in Example A-5 on page 365 are automatically run individually.

Example A-10 Kick Allrun script

$ cd $HOME/OpenFOAM/OpenFOAM-2.4.0/tutorials/incompressible/simpleFoam/motorBike/
$ time ./Allrun

After the series of binary files is run, a directory named 500 is created. This new directory
includes some simulated values, such as U (Magnitude), and p (Pressure), and so on. These
values show the physical state after 500 iterative calculations.

Figure A-7 shows the images of these simulated values of U (Magnitude) and p (Pressure)
around the motorbike visualized by the ParaView tool.

Figure A-7 Result of motorbike simulation

Note: To check what the domain decomposition looks like, use the following command:

[home/OpenFOAM/OpenFOAM-2.4.0/tutorials/incompressible/simpleFoam/motorBike]$
diff Allrun.org Allrun
13c13
< runApplication decomposePar

> runApplication decomposePar -cellDist
370 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Tuning techniques
This section describes the following tuning techniques:

� CPU binding
� SMT settings
� Linking tcmalloc

CPU binding
To get higher and more stable performance, each MPI process must be bound to each CPU
core. In OpenMPI, the use of the mpirun command automatically binds processes at the start
of the v1.8 series.

For more information, see the mpirun(1) man page (version 1.8.8) page of the Open MPI
website.

SMT settings
CAE applications, such as OpenFOAM, often have a difficult time making use of hardware
threads. However, in some cases, the use of SMT on POWER8 and assigning some MPI
processes into a single CPU core can improve the total throughput. Therefore, trying some
combination of SMT modes and the number of MPI processes assigned to a single core is
valuable for benchmarking and performance tuning.

Linking tcmalloc
In some cases, linking a thread-caching malloc (tcmalloc) library into the OpenFOAM
binary files improves their performance. For the nine example OpenFOAM binary files that
are listed in Example A-5 on page 365, the performance of surfaceFeatureExtract,
blockMesh, decomposePar, snappyHexMesh, patchSummary, reconstructParMesh, and
reconstructPar were improved. However, the performance of potentialFoam and simpleFoam
were slightly degraded by linking to a tcmalloc library.

Therefore, link the tcmalloc library to only the binary files that are expected to be improved by
using the shell-script, as shown in Example A-11.

Example A-11 Apply tcmalloc

$ cd $HOME/OpenFOAM
$ cat @apply_tcmalloc
#!/bin/sh
for i in surfaceFeatureExtract blockMesh decomposePar snappyHexMesh patchSummary
reconstructParMesh reconstructPar
do
 rm ./OpenFOAM-2.4.0/platforms/linuxPPC64leGccDPOpt/bin/$i
 cd `find ./OpenFOAM-2.4.0/applications/ -name $i -type d`
 wmake |tr '\\\n' ' ' > out.wmake
 echo `cat out.wmake` -L/opt/at9.0/lib64/ -ltcmalloc |sh -x
 rm out.wmake
 cd -
done
$./@apply_tcmalloc

For more information about tcmalloc, see the TCMalloc : Thread-Caching Malloc website.
Appendix A. ISV Applications 371

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://www.open-mpi.org/doc/v1.8/man1/mpirun.1.php
https://www.open-mpi.org/doc/v1.8/man1/mpirun.1.php

NAMD program

Nanoscale Molecular Dynamics (NAMD) is a freeware molecular dynamics simulation
package that is written by using the Charm++ parallel programming model.

This section introduces how to install and run NAMD 2.11 in an IBM POWER8 server by
using NVIDIA graphics programming units (GPUs) with CUDA 7.5.

Installing NAMD
Download the source code NAMD_2.11_Source.tar.gz from the Theoretical and
Computational Biophysics Group’s Software Downloads page of the University of Illinois at
Urbana-Champaign website.

Before downloading the source code, complete the registration process, which requires your
name and email address, and that you answer some questions and accept the license
agreement.

Download the NAMD_2.11_Source.tar.gz file to your preferred directory; for example,
$HOME/NAMD. Then, build the prerequisite package, as shown in Example A-12.

Example A-12 Building prerequisite package for NAMD

$ cd $HOME/NAMD
$ tar zxvf NAMD_2.11_Source.tar.gz
$ cd NAMD_2.11_Source
$ tar xvf charm-6.7.0.tar
$ cp -rp charm-6.7.0/src/arch/mpi-linux-ppc charm-6.7.0/src/arch/mpi-linux-ppc64le
$ cd charm-6.7.0
$./build charm++ mpi-linux-ppc64le -O -DCMK_OPTIMIZE=1
$ cd ../arch
$ ls -l | grep Linux-POWER
-rw-r----- 1 kame IBM1 190 6? 18 2014 Linux-POWER-g++.arch
-rw-r----- 1 kame IBM1 495 2? 7 2011 Linux-POWER-xlC.arch
-rw-r----- 1 kame IBM1 0 2? 7 2011 Linux-POWER.base
-rw-r----- 1 kame IBM1 467 12? 2 12:52 Linux-POWER.cuda
-rw-r----- 1 kame IBM1 138 2? 7 2011 Linux-POWER.fftw
-rw-r----- 1 kame IBM1 191 6? 18 2014 Linux-POWER.tcl

Before starting to build NAMD, prepare the FFTW package, as shown in Example A-13.

Example A-13 Preparing FFTW package

[/work/NAMD]$ wget ftp://ftp.fftw.org/pub/fftw/fftw-3.3.4.tar.gz
[/work/NAMD]$ tar zxvf fftw-3.3.4.tar.gz
[/work/NAMD]$ cd fftw-3.3.4
[/work/NAMD/fftw-3.3.4]$./configure --enable-float --prefix=`pwd`
[/work/NAMD/fftw-3.3.4]$ make
[/work/NAMD/fftw-3.3.4]$ make install
[/work/NAMD/fftw-3.3.4]$ ls lib
libfftw3f.a libfftw3f.la pkgconfig
372 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=NAMD
http://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=NAMD
http://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=NAMD

Prepare the TCL package, as shown in Example A-14.

Example A-14 Preparing TCL package

[/work/NAMD]$ wget
http://www.ks.uiuc.edu/Research/namd/libraries/tcl8.5.9-linux-ppc64le-threaded.tar
.gz
[/work/NAMD]$ tar zxvf tcl8.5.9-linux-ppc64le-threaded.tar.gz
[/work/NAMD]$ ls tcl8.5.9-linux-ppc64le-threaded/lib
libtcl8.5.a libtclstub8.5.a tcl8 tcl8.5 tclConfig.sh

Prepare some files for the parameter settings, as shown in Example A-15.

Example A-15 Preparing files for parameter settings

[/work/NAMD/NAMD_2.11_Source/arch]$ cat Linux-POWER-xlC_MPI.arch
NAMD_ARCH = Linux-POWER
CHARMARCH = mpi-linux-ppc64le
CXX = mpCC -w
CXXOPTS = -O3 -q64 -qnohot -qstrict -qaggrcopy=nooverlap -qalias=ansi -qarch=pwr8
-qtune=pwr8
CXXNOALIASOPTS = -O4 -q64 -qaggrcopy=nooverlap -qalias=noallptrs -qarch=pwr8
-qtune=pwr8
CXXTHREADOPTS = -O3 -q64 -qaggrcopy=nooverlap -qalias=ansi -qarch=pwr8 -qtune=pwr8
CC = xlc -w
COPTS = -O4 -q64 -qarch=pwr8 -qtune=pwr8

[/work/NAMD/NAMD_2.11_Source/arch]$ cat Linux-POWER.cuda
CUDADIR=/usr/local/cuda-7.5
CUDAINCL=-I$(CUDADIR)/include
CUDALIB=-L$(CUDADIR)/lib64 -lcudart_static -lrt -ldl
CUDASODIR=$(CUDADIR)/lib64
LIBCUDARTSO=
CUDAFLAGS=-DNAMD_CUDA
CUDAOBJS=$(CUDAOBJSRAW)
CUDA=$(CUDAFLAGS) -I. $(CUDAINCL)
CUDACC=$(CUDADIR)/bin/nvcc -O3 --maxrregcount 32 $(CUDAGENCODE) $(CUDA)
CUDAGENCODE=-gencode arch=compute_20,code=sm_20 -gencode
arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode
arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode
arch=compute_52,code=sm_52 -gencode arch=compute_52,code=compute_52

[/work/NAMD/NAMD_2.11_Source/arch]$ cat Linux-POWER.fftw3
FFTDIR=/work/NAMD/fftw-3.3.4/
FFTINCL=-I$(FFTDIR)/include
FFTLIB=-L$(FFTDIR)/lib -lfftw3f
FFTFLAGS=-DNAMD_FFTW -DNAMD_FFTW_3
FFT=$(FFTINCL) $(FFTFLAGS)

[/work/NAMD/NAMD_2.11_Source/arch]$ cat Linux-POWER.tcl
TCLDIR=/work/NAMD/tcl8.5.9-linux-ppc64le-threaded/
TCLINCL=-I$(TCLDIR)/include
TCLLIB=-L$(TCLDIR)/lib -ltcl8.5 -ldl
TCLLIB=-L$(TCLDIR)/lib -ltcl8.5 -ldl -lpthread
TCLFLAGS=-DNAMD_TCL
TCL=$(TCLINCL) $(TCLFLAGS)
Appendix A. ISV Applications 373

Modify the config file, as shown in Example A-16, to avoid errors during configuration.

Example A-16 Modifying the config file

[/work/NAMD/NAMD_2.11_Source]$ diff config.org config
383,390c383,390
< if ($charm_arch_mpi || ! $charm_arch_smp) then
< echo ''
< echo "ERROR: $ERRTYPE builds require non-MPI SMP or multicore Charm++ arch
for reasonable performance."
< echo ''
< echo "Consider ibverbs-smp or verbs-smp (InfiniBand), gni-smp (Cray), or
multicore (single node)."
< echo ''
< exit 1
< endif

> # if ($charm_arch_mpi || ! $charm_arch_smp) then
> # echo ''
> # echo "ERROR: $ERRTYPE builds require non-MPI SMP or multicore Charm++
arch for reasonable performance."
> # echo ''
> # echo "Consider ibverbs-smp or verbs-smp (InfiniBand), gni-smp (Cray), or
multicore (single node)."
> # echo ''
> # exit 1
> # endif

Configure NAMD, as shown in Example A-17.

Example A-17 Configuring NAMD

[/work/NAMD/NAMD_2.11_Source]$./config Linux-POWER-xlC_MPI --with-fftw3
--with-tcl --with-cuda

Selected arch file arch/Linux-POWER-xlC_MPI.arch contains:

NAMD_ARCH = Linux-POWER
CHARMARCH = mpi-linux-ppc64le
CXX = mpCC_r -w
CXXOPTS = -O3 -q64 -qnohot -qstrict -qaggrcopy=nooverlap -qalias=ansi -qarch=pwr8
-qtune=pwr8
CXXNOALIASOPTS = -O4 -q64 -qaggrcopy=nooverlap -qalias=noallptrs -qarch=pwr8
-qtune=pwr8
CXXTHREADOPTS = -O3 -q64 -qaggrcopy=nooverlap -qalias=ansi -qarch=pwr8 -qtune=pwr8
CC = xlc_r -w
COPTS = -O4 -q64 -qarch=pwr8 -qtune=pwr8
Creating directory: Linux-POWER-xlC_MPI
Creating link: .. to .rootdir
Writing build options to Linux-POWER-xlC_MPI/Make.config
Using Charm++ 6.7.0 build found in main build directory
Linking Makefile
Linking Make.depends
Linking src directory
Linking plugins directory
Linking psfgen directory
374 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Generated Linux-POWER-xlC_MPI/Make.config contains the following:

CHARMBASE = .rootdir/charm-6.7.0
include .rootdir/arch/Linux-POWER-xlC_MPI.arch
CHARM = $(CHARMBASE)/$(CHARMARCH)
NAMD_PLATFORM = $(NAMD_ARCH)-MPI-CUDA
include .rootdir/arch/$(NAMD_ARCH).base
include .rootdir/arch/$(NAMD_ARCH).tcl
include .rootdir/arch/$(NAMD_ARCH).fftw3
include .rootdir/arch/$(NAMD_ARCH).cuda

You are ready to run make in directory Linux-POWER-xlC_MPI now.

Then, run the make command to build NAMD, as shown in Example A-18.

Example A-18 Building NAMD

[/work/NAMD/NAMD_2.11_Source]$ cd Linux-POWER-xlC_MPI
[/work/NAMD/NAMD_2.11_Source/Linux-POWER-xlC_MPI]$ make

xlc -w -Isrc
-I/vol/xcae1/b5p218za/work/NAMD/tcl8.5.9-linux-ppc64le-threaded//include
-DNAMD_TCL -O4 -q64 -qarch=pwr8 -qtune=pwr8 -DNAMD_VERSION=\"2.11\"
-DNAMD_PLATFORM=\"Linux-POWER-MPI-CUDA\" -DREMOVE_PROXYRESULTMSG_EXTRACOPY
-DNODEAWARE_PROXY_SPANNINGTREE -DUSE_NODEPATCHMGR -o flipbinpdb src/flipbinpdb.c
|| \
echo "#!/bin/sh\necho unavailable on this platform" > flipbinpdb; \
chmod +x flipbinpdb
cp .rootdir/charm-6.7.0/mpi-linux-ppc64le/bin/charmrun charmrun

If you succeed in running the make command, you can find the execution binary file that is
named namd2 in the Linux-POWER-xlC_MPI directory.
Appendix A. ISV Applications 375

Running NAMD
Sample simulations of NAMD are available from the Theoretical and Computational
Biophysics Group’s NAMD Utilities page of the University of Illinois at Urbana-Champaign
website.

For this example, select ApoA1, which has been the standard NAMD cross-platform
benchmark for years, as shown in Figure A-8. The official name of this gene is apolipoprotein
A-I.

Figure A-8 Visualization of ApoA1 protein

The APOA1 gene provides instructions for making a protein that is called apolipoprotein A-I
(apoA-I). ApoA-I is a component of high-density lipoprotein (HDL). HDL is a molecule that
transports cholesterol and certain fats called phospholipids through the bloodstream from the
body’s tissues to the liver. After the molecules are in the liver, cholesterol and phospholipids
are redistributed to other tissues or removed from the body. Figure A-8 shows a visualization
of this protein.

For more information about ApoA1, see the APOA1 gene page of the US National Library of
Medicine’s website.

After preparing the data directory of ApoA1 that is named apoa1 on the same directory as
namd2, run this sample model by using 40 MPI processes, as shown in Example A-19.

Example A-19 Running NAMD with each example

$ MP_RESD=poe MP_HOSTFILE=./hf MP_PROCS=40 MP_SHARED_MEMORY=yes
MP_EAGER_LIMIT=65536 MEMORY_AFFINITY=MCM MP_INFOLEVEL=4 MP_BINDPROC=yes
MP_PE_AFFINITY=yes MP_BIND_MODE=spread MP_TASK_AFFINITY=cpu time poe ./namd2
./apoa1/apoa1.namd

For more information about the environment variables for the poe command that is shown in
Example A-19, see the poe page of the IBM Knowledge Center website.

Note: NAMD scales best by using simultaneous multithreading (SMT) of no more than two
threads per core. For example, if you have 20 physical cores on a Power System S822LC,
running NAMD with 40 threads can result in the best performance.
376 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.ks.uiuc.edu/Research/namd/utilities/
http://www.ks.uiuc.edu/Research/namd/utilities/
http://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=NAMD
https://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.pe.v2r3.pe100.doc/am102_poemanpage.htm
https://ghr.nlm.nih.gov/gene/APOA1

Appendix B. Additional material

This book refers to additional material that can be downloaded from the Internet, as described
in the following sections.

Locating the Web material

The Web material that is associated with this book is available in softcopy on the Internet from
the IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG248371

Alternatively, you can go to the IBM Redbooks website at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the IBM Redbooks
form number, SG248371.

Using the Web material

The additional Web material that accompanies this book includes the following files:

File name Description
smn_md.cfg.zip kickstarter file

System requirements for downloading the Web material

The Web material requires the following system configuration:

Hard disk space: 100 MB minimum
Operating System: Windows, Linux or macOS
Processor: i3 or higher
Memory: 1024 MB or higher

B

© Copyright IBM Corp. 2017. All rights reserved. 377

ftp://www.redbooks.ibm.com/redbooks/SG248371
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Downloading and extracting the Web material

Create a subdirectory (folder) on your workstation, and extract the contents of the Web
material .zip file into this folder.
378 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

Related publications

The publications that are listed in this section are considered particularly suitable for a more
detailed discussion of the topics that are covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide more information about the topic in this
document. Note that some publications that are referenced in this list might be available in
softcopy only:

� Implementing an IBM High-Performance Computing Solution on IBM POWER8,
SG24-8263

� Performance Optimization and Tuning Techniques for IBM Power Systems Processors
Including IBM POWER8, SG24-8171

� Implementing an IBM High-Performance Computing Solution on IBM POWER8,
SG24-8263

You can search for, view, download, or order these documents and other Redbooks,
Redpapers, Web Docs, draft, and other materials at the following website:

ibm.com/redbooks

Other publications

These publication Optimization and Programming Guide - XL C/C++ for Linux, V13.1.5, for
little endian distributions, SC27-6560, also is relevant as a further information source.

Online resources

The following websites are also relevant as further information sources:

� IBM Systems Hardware and Software for high performance computing:

http://www.ibm.com/systems/power/hardware/hpc.html

� xCAT (Extreme Cloud/Cluster Administration Toolkit):

http://xcat.org

� IBM Spectrum LSF:

http://www.ibm.com/systems/spectrum-computing/products/lsf/

� NVIDA Tesla P100:

https://devblogs.nvidia.com/parallelforall/inside-pascal/

� POWERAccel:

– https://ibm.biz/BdiSn2
– https://www.ibm.com/blogs/systems/tag/poweraccel/
© Copyright IBM Corp. 2017. All rights reserved. 379

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/systems/power/hardware/hpc.html
http://xcat.org
https://devblogs.nvidia.com/parallelforall/inside-pascal/
http://www.ibm.com/systems/spectrum-computing/products/lsf/
https://www.ibm.com/blogs/systems/power-systems-openpower-enable-acceleration/
https://www.ibm.com/blogs/systems/tag/poweraccel/
https://ibm.biz/BdiSn2

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
380 IBM POWER8 High-Performance Computing Guide: IBM Power System S822LC (8335-GTB) Edition

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

IS
B

N
 0738442550

S
G

24-8371-00

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

IBM
 POW

ER8 High-Perform
ance Com

puting Guide: IBM
 Pow

er System
 S822LC (8335-GTB) Edition

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738442550

SG24-8371-00

®

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. IBM Power System S822LC for HPC server overview
	1.1 IBM Power System S822LC for HPC server
	1.1.1 IBM POWER8 processor
	1.1.2 NVLink

	1.2 HPC system hardware components
	1.2.1 Login nodes
	1.2.2 Management nodes
	1.2.3 Compute nodes
	1.2.4 Compute racks
	1.2.5 High-performance interconnect
	1.2.6 Management and operating system
	1.2.7 Parallel file system

	1.3 HPC system software components
	1.3.1 System software
	1.3.2 Application development software
	1.3.3 Application software

	1.4 HPC system solution
	1.4.1 Compute nodes
	1.4.2 Management node
	1.4.3 Login node
	1.4.4 Combining the management and the login node
	1.4.5 Parallel file system
	1.4.6 High-performance interconnect switch

	Part 1 Developers guide
	Chapter 2. Compilation, execution, and application development
	2.1 Compiler options
	2.1.1 IBM XL compiler options
	2.1.2 GCC compiler options

	2.2 Porting applications to IBM Power Systems
	2.3 IBM Engineering and Scientific Subroutine Library
	2.3.1 ESSL Compilation in Fortran, XL C/C++, and GCC/G++
	2.3.2 ESSL example

	2.4 Parallel ESSL
	2.4.1 Program development
	2.4.2 Using GPUs with Parallel ESSL
	2.4.3 Compilation

	2.5 Using POWER8 vectorization
	2.5.1 AltiVec operations with GNU GCC
	2.5.2 AltiVec operations with IBM XL

	2.6 Development models
	2.6.1 OpenMP programs with the IBM Parallel Environment
	2.6.2 CUDA C programs with the NVIDIA CUDA Toolkit
	2.6.3 OpenACC
	2.6.4 IBM XL C/C++ and Fortran offloading
	2.6.5 MPI programs with IBM Parallel Environment v2.3
	2.6.6 Hybrid MPI and CUDA programs with IBM Parallel Environment
	2.6.7 OpenSHMEM programs with the IBM Parallel Environment
	2.6.8 Parallel Active Messaging Interface programs
	2.6.9 MPI programs with IBM Spectrum MPI
	2.6.10 Migrating from IBM PE Runtime Edition to IBM Spectrum MPI
	2.6.11 Using Spectrum MPI

	Chapter 3. Running parallel software, performance enhancement, and scalability testing
	3.1 Controlling the running of multithreaded applications
	3.1.1 Running OpenMP applications
	3.1.2 Setting and retrieving process affinity at run time
	3.1.3 Controlling NUMA policy for processes and shared memory

	3.2 Performance enhancements and scalability tests
	3.2.1 ESSL execution in multiple CPUs and GPUs
	3.2.2 OpenACC execution and scalability
	3.2.3 XL Offload execution and scalability

	3.3 Using IBM Parallel Environment v2.3
	3.3.1 Running applications
	3.3.2 Managing application
	3.3.3 Running OpenSHMEM programs

	3.4 Using the IBM Spectrum LSF
	3.4.1 Submit jobs
	3.4.2 Manage jobs

	3.5 Running tasks with IBM Spectrum MPI

	Chapter 4. Measuring and tuning applications
	4.1 Effects of basic performance tuning techniques
	4.1.1 Performance effect of a Rational choice of an SMT mode
	4.1.2 Effect of optimization options on performance
	4.1.3 Favorable modes and options for applications from the NPB suite
	4.1.4 Importance of binding threads to logical processors

	4.2 General methodology of performance benchmarking
	4.2.1 Defining the purpose of performance benchmarking
	4.2.2 Benchmarking plans
	4.2.3 Defining the performance metric and constraints
	4.2.4 Defining the success criteria
	4.2.5 Correctness and determinacy
	4.2.6 Keeping the log of benchmarking
	4.2.7 Probing the scalability
	4.2.8 Evaluation of performance on a favorable number of cores
	4.2.9 Evaluation of scalability
	4.2.10 Conclusions
	4.2.11 Summary

	4.3 Sample code for the construction of thread affinity strings
	4.4 ESSL performance results
	4.5 GPU tuning
	4.5.1 Power Cap Limit
	4.5.2 CUDA Multi-Process Service

	4.6 Application development and tuning tools
	4.6.1 Parallel Performance Toolkit
	4.6.2 Parallel application debuggers
	4.6.3 Eclipse for Parallel Application Developers
	4.6.4 NVIDIA Nsight Eclipse Edition for CUDA C/C++
	4.6.5 Command-line tools for CUDA C/C++

	Part 2 Administrator’s guide
	Chapter 5. Node and software deployment
	5.1 Software stack
	5.2 System management
	5.2.1 Frequently used commands with the IPMItool
	5.2.2 Boot order configuration
	5.2.3 System firmware upgrade

	5.3 xCAT overview
	5.3.1 xCAT cluster: Nodes and networks
	5.3.2 xCAT database: Objects and tables
	5.3.3 xCAT node booting
	5.3.4 xCAT node discovery
	5.3.5 xCAT BMC discovery
	5.3.6 xCAT OS installation types: Disks and state
	5.3.7 xCAT network interfaces: Primary and additional
	5.3.8 xCAT software kits
	5.3.9 xCAT synchronizing files
	5.3.10 xCAT version
	5.3.11 xCAT scenario

	5.4 Initial xCAT Management Node installation on S812LC
	5.4.1 RHEL server
	5.4.2 xCAT packages
	5.4.3 Configuring more network interfaces
	5.4.4 Host name and aliases
	5.4.5 xCAT networks
	5.4.6 DNS server
	5.4.7 DHCP server
	5.4.8 IPMI authentication credentials

	5.5 xCAT node discovery
	5.5.1 Verification of network boot configuration and genesis image files
	5.5.2 Configuring the DHCP dynamic range
	5.5.3 Configuring BMCs to DHCP mode
	5.5.4 Definition of temporary BMC objects
	5.5.5 Defining node objects
	5.5.6 Configuring host table, DNS, and DHCP servers
	5.5.7 Booting into Node discovery

	5.6 xCAT Compute Nodes (stateless)
	5.6.1 Network interfaces
	5.6.2 RHEL server
	5.6.3 CUDA Toolkit
	5.6.4 Mellanox OFED
	5.6.5 XL C/C++ runtime libraries
	5.6.6 XL Fortran runtime libraries
	5.6.7 Advance Toolchain runtime libraries
	5.6.8 PGI runtime libraries
	5.6.9 SMPI
	5.6.10 PPT
	5.6.11 ESSL
	5.6.12 PESSL
	5.6.13 Spectrum Scale (formerly GPFS)
	5.6.14 IBM Spectrum LSF
	5.6.15 Synchronize configuration files
	5.6.16 Generating and packing the image
	5.6.17 Node provisioning
	5.6.18 Postinstallation verification

	5.7 xCAT Login Nodes (stateful)

	Chapter 6. Cluster monitoring and health checking
	6.1 Basic commands
	6.2 IBM Spectrum LSF tools for job monitoring
	6.2.1 General information about clusters
	6.2.2 Getting information about hosts
	6.2.3 Getting information about jobs and queues
	6.2.4 Administering the cluster

	6.3 Using the BMC for node monitoring
	6.4 Using nvidia-smi tool for GPU monitoring
	6.4.1 Information about jobs on GPU
	6.4.2 All GPU details
	6.4.3 Compute modes
	6.4.4 Persistence mode
	6.4.5 More information

	6.5 Diagnostic and health check framework
	6.5.1 Installation
	6.5.2 Configuration
	6.5.3 Usage
	6.5.4 Adding tests

	Part 3 Evaluation and system planning guide
	Chapter 7. Hardware components
	7.1 Server features
	7.1.1 Minimum features
	7.1.2 System cooling

	7.2 NVIDIA Tesla P100
	7.3 Operating environment
	7.4 Physical package
	7.5 System architecture
	7.6 POWER8 processor
	7.6.1 POWER8 processor overview
	7.6.2 POWER8 processor core
	7.6.3 Simultaneous multithreading
	7.6.4 Memory access
	7.6.5 On-chip L3 cache innovation and intelligent cache
	7.6.6 L4 cache and memory buffer
	7.6.7 Hardware transactional memory

	7.7 Memory subsystem
	7.7.1 Memory riser cards
	7.7.2 Memory placement rules
	7.7.3 Memory bandwidth

	7.8 POWERAccel
	7.8.1 PCIe
	7.8.2 CAPI
	7.8.3 NVLink

	7.9 System bus
	7.10 PCI adapters
	7.10.1 Slot configuration
	7.10.2 LAN adapters
	7.10.3 Fibre Channel adapters
	7.10.4 CAPI-enabled InfiniBand adapters
	7.10.5 Compute intensive accelerator
	7.10.6 Flash storage adapters

	7.11 System ports
	7.12 Internal storage
	7.12.1 Disk and media features

	7.13 External I/O subsystems
	7.13.1 BMC

	7.14 Mellanox InfiniBand
	7.15 IBM System Storage
	7.15.1 IBM Storwize family
	7.15.2 IBM FlashSystem family
	7.15.3 IBM XIV Storage System
	7.15.4 IBM Elastic Storage Server

	Chapter 8. Software stack
	8.1 System management
	8.2 OPAL firmware
	8.3 xCAT
	8.4 RHEL server
	8.5 NVIDIA CUDA Toolkit
	8.6 Mellanox OFED for Linux
	8.7 IBM XL compilers, GCC, and Advance Toolchain
	8.7.1 XL compilers
	8.7.2 GCC and Advance Toolchain

	8.8 IBM Spectrum MPI
	8.8.1 IBM Parallel Performance Toolkit for POWER

	8.9 IBM Engineering and Scientific Subroutine Library and IBM Parallel ESSL
	8.10 IBM Spectrum Scale (formerly IBM GPFS)
	8.11 IBM Spectrum LSF (formerly IBM Platform LSF)

	Appendix A. ISV Applications
	Application software
	Bioinformatics
	OpenFOAM
	NAMD program

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	Downloading and extracting the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	Help from IBM

	Back cover

